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Abstract. Windowing is a sub-sampling method that enables the in-
duction of decision trees with large datasets. Using a small sample of
the available training examples, the method can achieve levels of accu-
racy comparable or better than those obtained using the full available
dataset. More relevant is the fact that Windowing-based strategies for
Distributed Data Mining (DDM) have shown a correlation between the
accuracy of the learned decision tree and the number of examples used to
learn it, i.e., the higher the accuracy, the fewer examples used to induce
the model. This paper corroborates that this behavior is also observed
when adopting inductive algorithms of a different nature than C4.5 or
ID3, the algorithms usually adopted when windowing, contributing to
the use of Windowing as a general sub-sampling method for DDM. The
paper also contributes exploring some metrics to the validation of the
obtained sub-samples of examples.
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1 Introduction

Windowing is a sub-sampling method that enabled the decision tree inductive
algorithms ID3 [9–11] and C4.5 [12, 13] to cope with large datasets, i.e., those
whose size precludes loading them in memory. Algorithm 1 defines the method:
First, a window is created by extracting a small random sample of the available
examples in the full dataset. The main step consists of inducing a model with
the window and testing it on the remaining examples, such that all misclassified
examples are moved to the window. This step iterates until a stop condition is
reached, e.g., all the available examples are correctly classified or a desired level
of accuracy is reached.
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Algorithm 1 Windowing.

function Windowing(Examples)
Window ← sample(Examples)
Examples← Examples−Window
repeat

stopCond← true
model← induce(Window)
for example ∈ Examples do

if classify(model, example) 6= class(example) then
Window ←Window ∪ {example}
Examples← Examples− {example}
stopCond← false

until stopCond
return model

It has been argued [3] that the method offers three advantages: It copes
well with memory limitations, reducing considerably the number of examples
required to induce a model of acceptable accuracy. It offers an efficiency gain by
reducing the time of convergence, specially when using a separate-and-conquer
inductive algorithm, as Foil [8], instead of the divide-and-conquer algorithms
such as ID3 and C4.5. It offers an accuracy gain, specially in noiseless datasets,
possibly explained by the fact that learning from a subset of examples may often
result in a less over-fitting theory.

Although the lack of memory doest not use to be an issue nowadays, similar
concerns arise when mining big and/or distributed data. Windowing has been
used as the core of a set of strategies for Distributed Data Mining (DDM) [6],
obtaining consistent results with respect to the achievable accuracy and the num-
ber of examples required by the method. On the contrary, efficiency suffered for
large datasets as the cost of testing the models in the remaining examples is not
negligible. However, this is alleviated by using GPUs [5]. More relevant for this
paper is the fact that the Windowing-based strategies shows a strong correlation
(-0.8175845) between the accuracy of the learned decision trees and the number
of examples used to induce them, i.e., the higher the accuracy obtained, the
fewer the number of examples used to induce the model. Reductions are as big
as the 90% of the available training data.

The objective of this work is to corroborate if such a correlation is observed
when using inductive algorithms of different nature, so that the advantages of
windowing as a sub-sampling method could be generalized beyond decision trees.
For this, the paper is organized as follows: Section 2 introduces the adopted
methodology; Section 3 presents the obtained results; and Section 4 discusses
conclusions and future work. A preliminary contribution of the paper is the study
of some metrics to try to validate the obtained windows and to understand the
way such sub-sampling works so efficiently in some cases.
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2 Methodology

Because of our interest in distributed settings, JaCa-DDM 4 was adopted to
run experiments. This tool [6] defines a set of Windowing-based strategies us-
ing J48, the Weka [14] implementation of C4.5, as inductive algorithm. Among
them, Counter is the most similar to the original formulation of Windowing,
excepting that: i) the dataset can be distributed in different sites, and ii) an
auto-adjustable stop criteria with a established maximum number of iterations
(10) is adopted. The parameters of the strategy, e.g., the maximum number of
round, is adopted from the literature. The same configuration is used for all the
experiments. The Counter strategy is tested on the datasets shown in Table 1,
selected from the UCI [2] and MOA [1] repositories. They vary in the number of
instances, attributes, and class’ values; as well as in the type of the attributes.
Some of them are affected by missing values.

Dataset Instances Attribs Types Missing Class

Adult 48842 15 Mixed Yes 2
Australian 690 15 Mixed No 2
Breast 683 10 Numeric No 2
Credit-g 1000 21 Mixed No 2
Diabetes 768 9 Mixed No 2
Ecoli 336 8 Numeric No 8
German 1000 21 Mixed No 2
Hypothyroid 3772 30 Mixed Yes 4
Kr-vs-kp 3196 37 Numeric No 2
Letter 20000 17 Mixed No 26
Mushroom 8124 23 Nominal Yes 2
Poker-lsn 829201 11 Mixed No 10
Segment 2310 20 Numeric No 7
Sick 3772 30 Mixed Yes 2
Splice 3190 61 Nominal No 3
Waveform5000 5000 41 Numeric No 3

Table 1. Datasets, adopted from UCI and MOA.

Apart from J48, the Counter strategy will be tested using the Weka im-
plementations of Naive Bayes, jRip, Multi-Perceptron, and SMO as inductive
algorithms. A 10-fold stratified cross-validation is run on each dataset, observ-
ing the average accuracy of the obtained models and the average percentage
of original dataset used to induce the model, i.e., 100% means the full original
dataset was used. All experiments were executed on a Intel Core i5-8300H at
2.3GHz, up to 3.9GHz with 8Gb DDR4. 8 distributed sites were simulated on
this machine.

4 https://github.com/xl666/jaca-ddm
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In order to understand the performed sub-sampling, the following measures
were used to compare the obtained window and the original dataset:

– The Kullback-Leibler divergence (DKL) [4] is defined as:

DKL(P ||Q) =
∑
x∈X

P (x)log2(
Q(x)

P (x)
)

where P (x) is the full dataset class distribution and Q(x) the window class
distribution. Instead of using a model to represent a conditional distribution
of variables, as usual, we focus on the class distribution, computed as the
marginal probability. Values closer to zero reflect higher similarity.

– Sim1 [15] is a similarity measure between datasets defined as:

sim1(Di, Dj) =
|Item(Di) ∩ Item(Dj)|
|Item(Di) ∪ Item(Dj)|

where Di is the window and Dj is the full dataset; and Item(D) denotes
the set of pairs attribute-value occurring in D. Values closer to one reflect
higher similarity.

– Red [7] measures redundancy in a dataset in terms of conditional population
entropy (CPE), defined as:

CPE = −
nc∑
i=1

p(ci)

na∑
a=1

nva∑
v=1

p(xa,v|ci)log2p(xa,v|ci)

where nc is the number of classes, na is the number of attributes, and nva

is the number of values for the attribute a. ci stands for the i− th class and
xa,v represents the v− th value of attribute a. CPE can be normalized [3] in
such a way that values closer to cero reflect lower redundancy:

Red = 1− CPE∑na

a=1 log2nva

3 Results

Figure 1 shows a strong negative correlation between the percentage of training
instances used to induce the models and their accuracies, independently of the
adopted inductive algorithm. This reproduces the results for J48 reported in
literature [6] and corroborates that under Windowing, in general, the models
with higher accuracy required less examples to be induced. However, accuracy
is affected by the adopted inductive algorithm, e.g., Poker-lsn is approached
very well by J48 (99.75 ± 0.07 of accuracy) requiring few examples (5% of the
full dataset); while Naive Bayes is not quite successful in this case (60.02 ±
0.42 of accuracy) requiring more examples (59%). This behavior is also observed
between jRip and MultiPerceptron for Hypothyroid; and between SMO and jRip
for Waveform5000.
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Fig. 1. Correlation between accuracy and percentage of used training examples.
J48 = -0.98, NB = -0.96, jRip = -0.98, MP = -0.98 and SMO = -0.99.

Table 2 shows the accuracy results in detail while Table 3 show the number
of used examples results, in terms of the percentage of the full dataset used for
each inductive algorithm. Although not shown because of the available space,
accuracies are comparable to those obtained without using Windowing, i.e., using
the 100% of the available data to induce the models. Big datasets, as Adult,
Letter, Poker-Isn, Splice, and Waveform5000 did not finish on reasonable time
when using jRip, MultiPerceptron and SMO, with and without Windowing. In
such cases, results are reported as not available (na). This might be solved by
running the experiments in a real cluster of 8 nodes, instead of simulating the
sites in a single machine, as done here, but it is not relevant for the purposes of
this work.
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J48 NB jRip MP SMO

Adult 86.17 ± 0.55 84.54 ± 0.62 na na na
Australian 85.21 ± 4.77 85.79 ± 4.25 85.94 ± 3.93 81.74 ± 6.31 85.80 ± 4.77
Breast 94.42 ± 3.97 97.21 ± 2.34 95.31 ± 2.75 95.45 ± 3.14 96.33 ± 3.12
Credit-g 71.50 ± 5.81 75.10 ± 2.60 69.80 ± 3.71 69.80 ± 5.63 74.80 ± 5.98
Diabetes 73.03 ± 3.99 76.03 ± 4.33 71.74 ± 7.67 72.12 ± 4.00 76.04 ± 3.51
Ecoli 82.72 ± 6.81 83.93 ± 7.00 81.22 ± 6.63 82.12 ± 7.49 84.53 ± 4.11
German 71.10 ± 5.40 75.20 ± 2.82 70.20 ± 3.85 69.60 ± 4.84 75.80 ± 3.12
Hypothyroid 99.46 ± 0.17 95.36 ± 0.99 99.23 ± 0.48 92.26 ± 2.75 94.30 ± 0.53
Kr-vs-kp 99.15 ± 0.66 96.65 ± 0.84 98.46 ± 0.95 98.72 ± 0.54 96.62 ± 0.75
Letter 85.79 ± 1.24 69.28 ± 1.26 85.31 ± 1.06 na na
Mushroom 100.00 ± 0.00 99.80 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.0 ± 0.00
Poker-lsn 99.75 ± 0.07 60.02 ± 0.42 na na na
Segment 96.53 ± 1.47 84.24 ± 1.91 95.54 ± 1.55 96.10 ± 1.15 92.42 ± 1.87
Sick 98.64 ± 0.53 96.34 ± 1.44 97.93 ± 0.95 96.32 ± 1.04 96.71 ± 0.77
Splice 94.04 ± 0.79 95.32 ± 1.07 92.75 ± 2.11 na 92.41 ± 1.34
Waveform5000 73.06 ± 2.55 82.36 ± 1.64 77.02 ± 1.59 na 85.94 ± 1.32

Table 2. Accuracies obtained from 10-fold cross validation (na = not available).

J48 NB jRip MP SMO

Adult 0.30 ± 0.01 0.21 ± 0.00 na na na
Australian 0.31 ± 0.02 0.25 ± 0.01 0.33 ± 0.02 0.39 ± 0.04 0.27 ± 0.01
Breast 0.17 ± 0.01 0.06 ± 0.00 0.14 ± 0.01 0.11 ± 0.01 0.09 ± 0.01
Credit-g 0.57 ± 0.03 0.43 ± 0.01 0.61 ± 0.01 0.55 ± 0.04 0.49 ± 0.01
Diabetes 0.54 ± 0.05 0.40 ± 0.02 0.52 ± 0.04 0.48 ± 0.03 0.42 ± 0.02
Ecoli 0.38 ± 0.03 0.27 ± 0.01 0.40 ± 0.03 0.31 ± 0.03 0.29 ± 0.02
German 0.56 ± 0.04 0.43 ± 0.01 0.59 ± 0.02 0.58 ± 0.02 0.47 ± 0.02
Hypothyroid 0.05 ± 0.00 0.12 ± 0.01 0.05 ± 0.00 0.24 ± 0.01 0.12 ± 0.01
Kr-vs-kp 0.08 ± 0.01 0.16 ± 0.01 0.13 ± 0.00 0.08 ± 0.00 0.12 ± 0.00
Letter 0.35 ± 0.02 0.38 ± 0.00 0.39 ± 0.01 na na
Mushroom 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
Poker-lsn 0.05 ± 0.00 0.59 ± 0.00 na na na
Segment 0.16 ± 0.01 0.22 ± 0.01 0.19 ± 0.01 0.14 ± 0.01 0.18 ± 0.00
Sick 0.07 ± 0.00 0.10 ± 0.01 0.08 ± 0.00 0.11 ± 0.01 0.10 ± 0.00
Splice 0.26 ± 0.01 0.11 ± 0.00 0.25 ± 0.01 na 0.19 ± 0.00
Waveform5000 0.59 ± 0.02 0.22 ± 0.01 0.52 ± 0.00 na 0.26 ± 0.01

Table 3. Percentage of the full dataset used for induction (na = not available).

The Kullback-Leibler divergence coefficient between the windows and the full
datasets was close to cero in all cases (DKL < 0.25), evidencing that the class
distribution of the windows is very similar to that observed in the full datasets.
However it does not seem to be a correlation between this coefficient and the
obtained accuracy, e.g., Mushroom has cero as divergence coefficient and 100%
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of accuracy, but Waveform5000 has similar divergence but considerable lower
accuracies.

Table 4 shows the results for sim1, suggesting that the windows for Aus-
tralian, Breast, German, Letter, Kr-vs-Kp, and Poker-lsn conserve all the values
for their attributes observed in the full datasets; while Adult and Segment have
problems achieving this. As in the previous case, this notion of similarity neither
seems to correlate with the observed accuracies, e.g., Segment.

j48 NB jRip MP SMO

Adult 0.39±0.01 0.29±0.00 na na na
Australian 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Breast 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Credit-g 0.63±0.03 0.51±0.01 0.69 ± 0.01 0.63 ± 0.04 0.58 ± 0.01
Diabetes 0.73±0.04 0.63±0.02 0.72 ± 0.03 0.69 ± 0.02 0.64 ± 0.01
Ecoli 0.77±0.03 0.65±0.02 0.78 ± 0.02 0.69 ± 0.04 0.65 ± 0.03
German 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
Hypothyroid 0.45±0.01 1.00±0.01 0.48 ± 0.01 0.68 ± 0.01 0.59 ± 0.01
Kr-vs-kp 1.00±0.01 0.97±0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
Letter 0.99±0.01 0.99±0.01 0.98 ± 0.00 na na
Mushroom 0.97±0.02 0.99±0.01 0.98 ± 0.00 0.97 ± 0.01 0.97 ± 0.01
Poker-lsn 1.00±0.00 1.00±0.00 na na na
Segment 0.28±0.01 0.32±0.01 0.31 ± 0.01 0.25 ± 0.01 0.28 ± 0.00
Sick 0.57±0.02 0.58±0.01 0.59 ± 0.01 0.60 ± 0.02 0.60 ± 0.01
Splice 0.97±0.04 0.96±0.05 0.97 ± 0.03 na 0.96 ± 0.04
Waveform5000 0.93±0.01 0.71±0.01 0.90 ± 0.00 na 0.76 ± 0.01

Table 4. Table of similarity measure sim1 using the 10-folds cross-validation windows.

Red shows consistently the same values for the windows and the full datasets,
meaning that both of them have very similar leves of redundancy. Given the na-
ture of Windowing this can be a little bit surprising, since the window is expected
to be less redundant than the full dataset because it does not include examples
already covered by the induced models. But Red measures the information value
given the information about the class values, an intrinsic property of the data
set; while the redundancy reduction expected by Windowing is a property of a
dataset given a classifier. This behavior of Red, reported in literature [3], sug-
gests that a different measure for redundancy in the sense of Windowing should
be adopted.

4 Conclusions and future work

The correlation between the accuracy of the models obtained by Windowing and
the number of examples used for this task was corroborated, independently of the
adoptd inductive algorithm, i.e., high accurate models require fewer examples
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to be learned. The metrics suggest that the windows have a class distribution
very similar to the full datasets, as well as the same items (attribute-value pairs).
They also have very similar intrinsic redundancy. Unfortunately, such similarites
are not enough to explain the success of the technque since they do not correlate
with the obtained accuracy of the models.

A metric reflecting the notion of redundancy in terms of the set of covered
examples seems necessary to quantify the efficiency of Windowing a sub-sampling
method. Also, the effect of noise in these metrics has to be considered explicitly,
as well as its effect on accuracy. Observing the evolution of the windows through
the whole process seems pertinent to the full understanding of Windowing.
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Héctor Gabriel Acosta-Mesa, and Francisco Grimaldo. A windowing strat-
egy for distributed data mining optimized through GPUs. Pattern Recognition
Letters, 93(Suplement C):23–30, July 2017.

6. Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramı́rez, and Fran-
cisco Grimaldo. Modeling and implementing distributed data mining strategies in
JaCa-DDM. Knowledge and Information Systems, 60(1):99–143, 2019.

7. Martin Møller. Supervised learning on large redundant training sets. International
Journal of Neural Systems, 4(1):15–25, 1993.

8. J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

9. John Ross Quinlan. Induction over large data bases. Technical Report STAN-
CS-79-739, Computer Science Department, School of Humanities and Sciences,
Stanford University, Stanford, CA, USA, May 1979.

10. John Ross Quinlan. Learning efficient classification procedures and their applica-
tion to chess en games. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M.
Mitchell, editors, Machine Learning, volume I, chapter 15, pages 463 – 482. Morgan
Kaufmann, San Francisco (CA), 1983.

11. John Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
12. John Ross Quinlan. C4. 5: programs for machine learning, volume 1. Morgan

kaufmann, San Mateo, CA., USA, 1993.
13. John Ross Quinlan. Improved use of continuous attributes in c4.5. Journal of

Artificial Intelligence Research, 4:77–90, 1996.
14. Ian H Witten, Eibe Frank, and Mark A Hall. Data Mining: Practical Machine

Learning Toools and Techniques. Morgan Kaufmann Publishers, Burlington, MA.,
USA, 2011.

15. Shichao Zhang, Chengqi Zhang, and Xindong Wu. Knowledge Discovery in Multi-
ple Databases. Advanced Information and Knowledge Processing. Springer-Verlag
London, Limited, London, UK, 2004.


