
J-MADeM v.1.1: A full-fledge AgentSpeak(L)
multimodal social decision library in Jason

Francisco Grimaldo1, Miguel Lozano1, Fernando Barber1,
Alejandro Guerra-Hernández2

1 Departament d’Informàtica
Universitat de València

Av. Vicent Andrés Estellés, s/n, Burjassot, Spain, 46100
francisco.grimaldo@uv.es, miguel.lozano@uv.es,

fernando.barber@uv.es
2 Departamento de Inteligencia Artificial

Universidad Veracruzana
Facultad de F́ısica e Inteligencia Artificial

Sebastián Camacho No. 5, Xalapa, Ver., México, 91000
aguerra@uv.mx

Abstract. In spite of the success of the Belief-Desire-Intention (BDI)
model of agency, the gap between the actual implementation of BDI
agents and the subjacent theories is a known problem of the approach.
AgentSpeak(L), the abstract agent oriented programming language, was
proposed as a solution for this problem; and Jason, its Java based imple-
mentation, provides a full featured development environment for it. How-
ever, a subtle question remains to be seen: the equilibrium between Java
based efficient coding solutions, and the declarative, fully intentional,
AgentSpeak(L) ones. In this paper we show how the new version of the
J-MADeM library has been endowed with an AgentSpeak(L) layer for the
implementation of multimodal social decisions in Jason. J-MADeM v.1.1
thus accelerates the development process and opens new lines of research
to explore, e.g., intentional learning. To illustrate the benefits of this new
release, we present a new example in which the J-MADeM library has
been applied to solve the problem of meeting scheduling through a deci-
sion making approach that considers different points of view.

Keywords: AgentSpeak(L), Jason, MultiAgent Resource Allocation,
Multimodal Social Decision Making.

1 Introduction and Related work

In spite of the success of the Belief-Desire-Intention (BDI) model of agency, the
gap between the actual implementation of BDI agents and the subjacent theo-
ries is a known problem of the approach. AgentSpeak(L) [16], the abstract agent
oriented programming language, was proposed as a solution for this problem;
and Jason [1], its Java based implementation, provides a full featured develop-
ment environment for it. However, a subtle question remains to be seen: the

2

equilibrium between Java based efficient coding solutions, and the declarative,
fully intentional, AgentSpeak(L) ones. This equilibrium is particularly impor-
tant when dealing with social and organizational models, due to the inherent
complexity of the problems they face.

Social and organizational models are being studied under the scope of multi-
agent systems (MAS) in order to regulate the autonomy of self-interested agents.
Nowadays, the performance of a MAS is determined not only by the degree of
deliberativeness but also by the degree of sociability. In this sense, sociability
points to the ability to communicate, cooperate, collaborate, form alliances,
coalitions and teams. The assignment of individuals to an organization generally
occurs in Human Societies [15], where the organization can be considered as a
set of behavioural constraints that agents adopt, e.g., by the role they play [5].

The definition of a proper MAS organization is not an easy task, since it
involves dealing with three dimensions: functioning, structure, and norms [14].
From the functioning perspective, systems focus on achieving the best plans and
cover aspects such as: the specification of global plans, the policies to allocate
tasks to agents, the coordination of plans, etc. [19, 4]. From the structural per-
spective, systems focus on defining the organizational structures (roles, relations
among roles, groups of roles, etc.) that establishes the obligations/permissions
of their agents [8, 7]. Very few models deal with both previous dimensions to
support agent decision making about organizations, e.g., MOISE+ [14]. For the
sake of simplicity, the third dimension is not discussed here.

Social reasoning has been extensively studied in MAS in order to incorporate
social actions to cognitive agents [3]. As a result of these works, agent interaction
models have evolved to social networks that try to imitate the social structures
found in real life. Social dependence networks allow agents to cooperate or to
perform social exchanges attending to their dependence relations [18]. Trust net-
works can define different delegation strategies by means of representating the
attitude towards the others through the use of some kind of trust model, e.g.,
reputation [6]. Agents in preference networks express their preferences normally
using utility functions so that personal attitudes can be represented by the dif-
ferential utilitarian importance they place on the others’ utilities. Following this
preferential approach, the MADeM (Multi-modal Agent Decision Making) model
[9] is a market-based mechanism for social decision making, capable of simulat-
ing different kinds of social welfares (e.g. elitist, utilitarian), as well as social
attitudes of their members (e.g. egoism, altruism).

Few works dealing with complex social or organizational models have been de-
livered as a library for an agent-oriented programming language, e.g., J-MOISE+
[14]. However, such libraries are of great value to the community of MAS develop-
ers since they reduce the gap between theory and practice of MAS. In this paper
we show how the new version of the J-MADeM library [10] has been endowed
with an AgentSpeak(L) layer for the implementation of multimodal social de-
cisions in Jason. J-MADeM v.1.1 thus accelerates the development process and
opens new lines of research to explore, (e.g., intentional learning [12, 13]). To
illustrate the benefits of this new release, we present a new example in which the

3

J-MADeM library has been applied to solve the well-known problem of meeting
scheduling through a decision making approach that considers different points
of view.

The rest of the paper is organized as follows: The next section introduces the
MADeM model. Section 3 shows the new features of J-MADeM v.1.1 library,
which allows programming MADeM decisions in Jason by only using AgentS-
peak(L). In section 4 we reexamine the old J-MADeM examples, i.e, the Gold
Miners and the Virtual University Bar simulation, as well as a new meeting
scheduling application example. Finally, in section 5 we state the conclusions of
this work and discuss about future lines of research.

2 The MADeM model

This section summarizes the MADeM (Multi-modal Agent Decision Making)
model, fully explained in [9], in order to retrieve the main parameters that are
necessary to use it. The MADeM model provides agents with a general mecha-
nism to make socially acceptable decisions. In this kind of decisions, the members
of an organization are required to express their preferences with regard to the
different solutions for a specific decision problem. The whole model is based on
the MARA (Multi-Agent Resource Allocation) theory [2], therefore, it repre-
sents each one of these solutions as a set of resource allocations. MADeM can
consider both tasks and objects as plausible resources to be allocated, which it
generalizes under the term task-slots. MADeM uses first-sealed one-round auc-
tions as the allocation procedure [17] and a multi-criteria winner determination
problem to merge the different preferences being collected according to the kind
of agent or society simulated. Thus, given a MAS composed by the set of agents
A, the formal definition of a MADeM decision problem can be represented by
the following tuple:

< a,Al,Ag, Pw,Uf, Uw,Cuf >

where:

– a ∈ A is the agent in charge of making a social decision or the auctioneer
agent.

– Al is the set of resources or task-slots allocations representing all possible
solutions for a specific decision problem.

– Ag ⊆ A is the subset of agents being consulted or bidder agents, which can
be either infered from the organisational structure or maintained locally.

– Pw : Ag → Rn are the personal weights (i.e. personal attitudes) that are
used to balance the preferences received from each agent in Ag.

– Uf is the set of utility functions of the form u : Al × Ag → R representing
the agents’ preferences with regard to the resource allocations considered.

– Uw : Uf → R are the utility weights that are used by the agent a to
balance the importance given to each utility function in Uf when resolving
the winner determination problem.

4

– Cuf ∈ {elitist, egalitarian, utilitarian, nash} is the collective utility func-
tion representing the social welfare of the simulated society, that is, the type
of society where agents are located.

Figure 1 shows an overview of the multi-modal decision making procedure
followed by the agents, which mainly involves three steps:

a1 Auctioneer a2 Bidder an Bidder...

construct_allocations (Task,Allocs)

launch_decision (Task,Allocs,U)

U(Allocs)

winner (Pw)

U(Allocs)

Au
ct

io
ni

ng
Bi

dd
in

g
W

in
ne

r
de

te
rm

in
at

io
n

Fig. 1. MADeM Procedure

1. Auctioning phase: The auctioneer agent (a1) wants to socially solve a de-
cision problem, e.g., where to sit. A set of allocations representing all the
possible solutions for the problem ({S1, S2, . . . , S|Allocs|}) is computed by
him. These allocations have the form of task slots assignations such as
SitAt(P) ← table1. Then, he auctions them to the bidder agents. As com-
plex decisions could require to consider more than one point of view, the
auctioneer can start several auctions (auk({S1, . . . , S|Allocs|}, Uk)) to eval-
uate the same set of allocations but using different utility funcions (au1

through au|U |).
2. Bidding phase: Since the auctioneer informs about both the task slot alloca-

tions and the utility functions being considered, bidders simply have to com-
pute the requested utility functions and return the values corresponding to
each auction back to the auctioneer (bidk

i =< Uk
i (S1), . . . , Uk

i (S|Allocs|) >).
3. Winner determination phase: In this phase, the auctioneer selects a winner

allocation for each launched auction. To do this, he uses a market-based

5

winner determination problem to merge the different preferences being col-
lected according to the kind of agent or society simulated. Thus, the final
winner allocation will represent an acceptable decision for the society being
simulated. As already mentioned, the details of these calculations are out of
the scope of this paper. They are fully described in [9].

3 J-MADeM v.1.1 Implementation

The J-MADeM v.1.1 offers to the AgentSpeak programmer: (i) an agent archi-
tecture that Jason agents can use to carry out their own MADeM decisions, (ii)
an ontology to express MADeM data as beliefs and rules, and (iii) a plan library
to execute MADeM processes.

The agent architecture, jmadem.MADeMAgArch, implements a set of ac-
tions (Table 1) which perform the basic operations of the multimodal social
decision model. As usual in Jason, actions are prefixed by the name of the li-
brary, e.g., to set the walfare of the society as a nash equilibrium, the action
jmadem.set welfare(nash) is executed in a plan. The action for construct-
ing allocations is very general, basically it computes (at Java level) the cartesian
product of the slots domains. Usually some kind of filtering is required to obtain
“legal” allocations. The rest of the actions are devoted to set the MADeM pa-
rameters, as defined in section 2, e.g., set personal weight; and to launch
the MADeM decision process, e.g., launch decision.

Table 1. Actions defined in the J-MADeM library.

Action Description
add utility function("P.U") P is a Java package name and

U the utility function name.
add utility function(U,N) U is a utility name and

N is fully qualified name of the function Java class.
construct allocations(T,S,E,Al) T = t(S1, . . . , Sn) is a function denoting a task t of n slots,

S ⊆ {S1, . . . , Sn} is a set of task slots to be allocated,
E = [[e1, . . . , ej], . . .] elements in the domain of each slot,
Al is the computed list of allocations

launch decision(A,AL,U,DId) A is a set of agents,
AL is a set of allocations,
U is a list of utilify functions, and
DId is the output parameter.

launch decision1(A,AL,U,DId) As above, but it returns only 1 solution.
remove utility function(U,N) U and N are as above.
reset personal weights(PW) PW = [jmadem personal weight(A,), . . .].
reset utility weights(UW) UW = [jmadem utility weight(U,), . . .].
set list of personal weights(PW) PW = [jmadem personal weight(A, W), . . .], where

A is an agent and W ∈ < his personal weight.
set list of utility weights(UW) UW = [jmadem utility weight(U, W), . . .]], where

U is an utility name and W ∈ < its weight.
set personal weight(A,W) A is an agent and

W ∈ < is his weight.
set remove MADeM data(V) If V is true MADeM data is deleted at the Java level,

once the decision is done.
set timeout(T) T is a numerical value in milliseconds (1000 by default).
set utility weight(U,W) U is a utility name and W ∈ < is its weight.
set welfare(W) W ∈ {utilitarian, egalitarian, elitist, nash} is the welfare.

6

MADeM agents use an ontology (Table 2) to define the input data of a
decision process declaratively as beliefs. In this way, data is accessible to Test
Goals and Speech Acts with Ask-like performatives. Utilities and filters can now
be defined as beliefs or rules. For instance:

jmadem_utility(dummyUF,_,use(coffeeMachine,Myself),0) :- .my_name(Myself).

expresses that an agent is not interested in using the coffee machine following
the utility function dummyUF. Similarly, a belief:

jmadem_filter(dummyFilter,use(coffeeMachine,fran)).

can be used to filter fran from a set of allocations. In addition, the agent class
jmadem.MADeMAgent overrides the default belief revision function of Jason to
delete temporal beliefs added while computing utility values.

Table 2. The ontology used by J-MADeM agents.

Belief formula Description
jmadem list of personal weights(PW) PW is a list of personal weight, as defined below.
jmadem list of utility weights(UW) UW is a list of utility weights, as defined below.
jmadem filter(F,Al) F is the name of the filter

Al is an allocation to be filtered.
jmadem personal weight(A,W) A is an agent and W ∈ < his weight.
jmadem timeout(T) T is the timeout in millisecond (1000 by default).
jmadem utility(U,N) U is the utility function name and

N is the name of the java class.
jmadem utility(U,A,Al,V) U is the utility function name,

A is the auctioneer agent,
Al is an allocation, and
V is the utility value assigned to Al according to U .

jmadem utility weight(U,W) U is an utility name and W ∈ < is its weight.
jmadem welfare(W) W ∈ {utilitarian, egalitarian, elitist, nash}.

The library of plans jmadem.asl enables the calling of MADeM processes
as Achieve Goals. The trigger events recognized by these plans are listed in Ta-
ble 3. Utilities and filters can also be defined as plans. For instance, the previous
examples would be as follows:

+!jmadem_utility(dummyUF,_,use(coffeeMachine,Myself),0) : .my_name(Myself).
+!jmadem_filter(dummyFilter,use(coffeeMachine,fran)) : true.

Then, Speech Acts with AskHow-like performatives can be used to exchange
utilities and filters defined as plans. Furthermore, there is a plan for constructing
allocations after the beliefs of an agent (!jmadem construct allocations
in Table 3). Instead of listing the domains for each slot, as it was the case for the
corresponding action, the user defines a logical query E that computes them.
Thus “legal” allocations are computed directly. Alternatively, allocations can be
further filtered by means of the achive goal !jmadem filter allocations.

7

Table 3. Trigger Events used by J-MADeM agents.

Trigger Event Description
+!jmadem get utility function names(U) U is a list of utility names.
+!jmadem construct allocations(T,E,Al) T is a set of task slots,

E is a logic formula to compute the elements
of the allocation, and
Al is the resulting set of allocations.

+!jmadem filter allocations(F,Al,FAls) F is a filter,
Al is a set of allocations,
FAls is a set of filtered allocations.

+!jmadem launch decision(A,Al,U,DId) A is a set of agents,
Al is a set of allocations,
U is a list of utility function names,
DId is a decision identifier.

+!jmadem launch decision1(A,Al,U,DId) As above, but for 1 solution.

Let us introduce a very simple example to illustrate the use of the library.
Emphasis is on the different ways of defining utilities. The test MAS (Table 4)
defines a society where four agents (lines 4–7) try to decide who prepares the
coffee in an office 3. The entry classpath (line 9) must include the current
path to the J-MADeM library.

Table 4. A MAS for deciding who prepares the coffee.

1 MAS test {
2 infrastructure: Centralised
3 agents:
4 fran agentArchClass jmadem.MADeMAgArch agentClass jmadem.MADeMAgent;
5 miguel agentArchClass jmadem.MADeMAgArch agentClass jmadem.MADeMAgent;
6 fernando agentArchClass jmadem.MADeMAgArch agentClass jmadem.MADeMAgent;
7 alejandro agentArchClass jmadem.MADeMAgArch agentClass jmadem.MADeMAgent;
8

9 classpath: "lib/jmadem.jar";
10 }

Agent fran (Table 5) launches the multimodal social decision process, be-
lieving that three other agents and himself are going to participate in it (line
4). He believes that the welfare of his society is utilitarian (line 6) and also ex-
presses his points of view as beliefs about utility functions (lines 8–11). Beliefs
are a natural and useful way to declare preferences for different agents (lines 13–
15) and points of view (line 17–18). Agent fran wants to decide who uses the
coffee machine in the office, excluding himself (lines 25–27). This exemplifies the
generation of allocations filtered under some criteria, e.g., not including fran.

3 A simplified version of the test-api MAS included in the J-MADeM v.1.1 distri-
bution, which exemplifies much more uses of the redudant facilities provided by the
library.

8

Since all MADeM data have been declared at the AgentSpeak(L) level, sub-
goals as !jmadem get utility function names/1 and internal actions as
.findall can be used to configure the inputs for the decision process (line
28–30). Anyway the utility functions are still defined as Java classes in the fran
package. On the contrary, the agent fernando (Table 6) declares his utili-
ties as beliefs (rules) and the agent miguel (Table 7) does it as plans. Agent
alejandro (Table 8), as a newcomer, profits of the approach to ask miguel
his preferences and adopt them.

Table 5. Agent fran launches the social decision process.

1 { include("lib/asl/jmadem.asl") } // J-MADeM Plan Library
2

3 /* Beliefs */
4 ag(fran). ag(fernando). ag(miguel). ag(alejandro).
5

6 jmadem_welfare(utilitarian).
7

8 jmadem_utility(minimumUtilityFunction,
9 "fran.MinimumUtilityFunction").

10 jmadem_utility(maximumUtilityFunction,
11 "fran.MaximumUtilityFunction").
12

13 jmadem_personal_weight(fernando,0.25).
14 jmadem_personal_weight(miguel,0.5).
15 jmadem_personal_weight(alejandro,0.25).
16

17 jmadem_utility_weight(minimumUtilityFunction,0.25).
18 jmadem_utility_weight(maximumUtilityFunction,0.75).
19

20 /* Initial goal */
21 !test.
22

23 /* Test plans */
24 +!test
25 <- TaskSlot = use(coffeeMachine, Agent);
26 Elements = (ag(Agent) & Agent \== fran);
27 !jmadem_construct_allocations(TaskSlot, Elements, Allocs);
28 .findall(Ag, ag(Ag), Ags);
29 !jmadem_get_utility_function_names(Us);
30 jmadem.launch_decision(Ags, Allocs, Us, DId);
31 .println("Launched MADeM decision with identifier: ", DId).

4 Experiments and Results

This section summarizes the results obtained in three application examples de-
veloped to test J-MADeM agents. First, we revisit the Gold Miners problem [1], a
classical simulation scenario where agents must compete for the resources (gold)
located at the environment. This example allows us to evaluate the efficiency of
the auction-based method proposed and to experiment with dynamic organiza-
tions. Second, in order to test the sociability features provided by J-MADeM, we

9

Table 6. Agent fernando: utilities as beliefs.

1 { include("lib/asl/jmadem.asl") } // J-MADeM Plan Library
2

3 /* Beliefs */
4

5 jmadem_utility(minimumUtilityFunction,_, Allocation, 0.2) :-
6 .my_name(AgName) & Allocation = use(_,AgName).
7 jmadem_utility(minimumUtilityFunction,_, Allocation, 1) :-
8 .my_name(MyName) & Allocation = use(_,AgName) & MyName \== AgName.
9

10 jmadem_utility(maximumUtilityFunction,_, Allocation, 0.8) :-
11 .my_name(AgName) & Allocation = use(_,AgName).
12 jmadem_utility(maximumUtilityFunction,_, Allocation, 0) :-
13 .my_name(MyName) & Allocation = use(_,AgName) & MyName \== AgName.
14

15 jmadem_utility(zeroUtilityFunction,_,_,0).
16

17 jmadem_utility(noneUtilityFunction,_,_,none).

have created a virtual university bar simulation. In this scenario waiter agents
serve the orders placed by customer agents. According to the model parameters
and the society being simulated, waiters are able to combine social behaviors
(i.e. chatting) and efficiency at work. In the last example we use J-MADeM to
solve a Meeting Scheduling Problem (MSP).

4.1 The Gold Miners

In this example a team of gold-mining agents has to find a set of chunks of gold,
randomly scattered in a grid-like territory, in order to carry them to a depot. The
original Jason team consists of a leader that assigns each miner to a quadrant
of the grid. The miners then explore and pick up the pieces of gold they find
in the environment. To be more efficient, when an agent finds a gold in his way
and can not pick it up, he can use an auction-based model to inform the others
about the new gold location and assign the gold to the winner agent.

Following the original Jason implementation, we have created an equivalent
MAS with J-MADeM agents to be able to compare both. We have implemented
an utility function (goldDistance), equivalent to the distance function used by
the original miners, so that J-MADeM miners can express their preferences with
regard to the gold units. Next, we find the definition of one of the cases of this
utility function, defined entirely at the BDI level:

1 +!utility(goldDistance,_,gold(X,Y,MinerName), Distance)
2 : .my_name(MinerName) & free & not carrying_gold
3 & not allocated(gold(X,Y,_))
4 <-?pos(MyX, MyY);
5 // Distance between two points
6 jia.dist(MyX,MyY,X,Y,Dist2Gold);
7 Distance = 1000 - Dist2Gold.

Two versions of this example are included in the J-MADeM v.1.1 distribution:
the original gold-miners-jmadem and the gold-miners-structured,

10

Table 7. Agent miguel: utilities as plans.

1 { include("lib/asl/jmadem.asl") } // J-MADeM Plan Library
2

3 /* Plans */
4

5 +!jmadem_utility(minimumUtilityFunction, Auctioneer, Allocation, 0.3)
6 : .my_name(AgName) & Allocation = use(_,AgName).
7 +!jmadem_utility(minimumUtilityFunction, Auctioneer, Allocation, 1)
8 : .my_name(MyName) & Allocation = use(_,AgName) & MyName \== AgName.
9

10 +!jmadem_utility(maximumUtilityFunction, Auctioneer, Allocation, 0.9)
11 : .my_name(AgName) & Allocation = use(_,AgName).
12 +!jmadem_utility(maximumUtilityFunction, Auctioneer, Allocation, 0)
13 : .my_name(MyName) & Allocation = use(_,AgName) & MyName \== AgName.
14

15 +!jmadem_utility(zeroUtilityFunction,_,_,0).
16

17 +!jmadem_utility(noneUtilityFunction,_,_,none).

Table 8. Agent alejandro: uses Speech Acts to form his utilities.

1 { include("lib/asl/jmadem.asl") } // J-MADeM Plan Library
2

3 /* Initial goal */
4

5 !askUF.
6

7 /* Plans */
8

9 // Alejandro gets the utility functions from Miguel
10 +!askUF
11 <- .send(miguel, askHow, {+!jmadem_utility(_,_,_,_)}).

where a new multi-agent organization is proposed to adapt better to different
gold distributions. For a complete description of both experiments, see [11].

4.2 Virtual university bar

This social scenario represents a virtual university bar where waiters take orders
placed by customers. Both waiters and customers carry out tasks in the virtual
bar and they use J-MADeM to decide among different task slot assignments. For
a full description of the simulated scenario see [9].

In this scenario, we test the ability of J-MADeM to model different social be-
haviors by means of utility weights (UW) and personal weights (PW). We have
modelled the waiters with three different utility functions: one utility function
for performance, another utility function for sociability with other waiters, and
another one for representing the tiredness of waiters.

Preferences about these points of view are expressed as beliefs, e.g., for a
coordinated waiter focusing on performance:

11

1 jmadem_utility_weight(performanceUF, 0.75).
2 jmadem_utility_weight(socialUF, 0.125).
3 jmadem_utility_weight(tirednessUF, 0.125).

Furthermore, using personal weights, waiters can model their attitude to-
wards others. For instance, an altruist waiter fernando defines the following
beliefs:

1 jmadem_personal_weight(fernando, 0.25).
2 jmadem_personal_weight(miguel, 0.75).
3 jmadem_personal_weight(alejandro, 0.75).
4 jmadem_personal_weight(fran, 0.75).

This two dimensions of weights may be combined for obtaining more complex
and richer behaviors for the agents. Detailed statistics of the different behaviors
may be seen in [9].

4.3 The Meeting Scheduling Problem (MSP)

This section presents a J-MADeM implementation of the MSP problem, a well
known scheduling problem to find the best allocation for a meeting within an
organization. Traditionaly, a meeting scheduling problem is defined as a pair
〈A,M〉, where A is a set of agents and M a set of meetings. A time slot is
denoted by 〈D,H〉 where D is a day and H is an hour. A meeting mi ∈ M
is usually defined as a tuple 〈Ai, hi, li, wi, Si, Ti〉, where Ai is the set of agents
assisting to the meeting; hi ∈ A is the host of the meeting; li is the duration of
the meeting; wi is the priority assigned to the meeting; and Si is the starting
time; and Ti = 〈Di, Hi〉 is the time slot assigned to the meeting or a list of time
slots representing diffent solutions for the scheduling.

Global performance has been suggested to be measured as the weighted suc-
cess ratio in scheduling n meetings:

η =
∑n

i=1 wi × ρi∑n
i=1 wi

where:

ρi =
{

1 if mi has been scheduled
0 otherwise

The example proposed is about school meetings in a MAS where four agents
A = {director, teacher, father, father worker} try to schedule some meetings
proposed by the host hi = director to Ai = A−{director} agents. All meetings
last li = 2 hours and their starting time can be Si ∈ H = {9, 11, 15} on days D =
{monday, tuesday}. Two kinds of meetings are considered: Usual monomodal
meetings, based on laboral preferences weighted with wi = 1; and MADeM
Multimodal meetings considering two weights: wl = math.random(1) for labor
preferences; and wp = 1−wl for personal preferences. Performace η varies slightly
since ρi is the number of attendants for the meeting mi. This variation takes into
account that autonomous agents can accept to assist to the scheduled meeting
or not, following their preferences.

12

Bidder agents in Ai express their constraints as beliefs. Laboral and personal
constraints values are in the range [0..1], where 1 indicates a full availability of
the agent to attend the meeting and 0 indicates quite the opposite. A constraint
of value 0.6 means: I could attend, but I’d prefer to schedule the meeting in
another way. For instance, the father worker agent has indifferent personal
constraints for both days (anonymous variables) at 9 and 15 hours (lines 1–2);
and a labor hard constraint both days at 11 hours (line 3).

1 constraint(personal,_,9,0.5).
2 constraint(personal,_,15,0.5).
3 constraint(labor,_,11,0).

Tables 9 and 10 show the utility values defined for this example. Following
the minimun constraint values, utilities are computed using the following rules:

1 jmadem_utility(laborUF,_,meeting(_,Day,Hour), Min)
2 :- .findall(V, constraint(labor,Day,Hour,V), LValues) &
3 .min(LValues, Min).
4

5 jmadem_utility(personalUF,_,meeting(_,Day,Hour), Min)
6 :- .findall(V, constraint(_,Day,Hour,V), LValues) &
7 .min(LValues, Min).
8

9 jmadem_utility(_,_,_,1) :- true.

Table 9. Labor Utility Function: [0 | 1]

Monday Tuesday

time teacher father father worker teacher father father worker

9 0 1 1 0 1 1
11 1 1 0 1 1 0
15 1 1 1 0 1 1

Table 10. Personal Utility Function: [0..1]

Monday Tuesday

time teacher father father worker teacher father father worker

9 0 0.2 0.5 0 0.2 0.5
11 1 1 0 1 1 0
15 0.3 0.2 0.5 0 0.2 0.5

The host agent believes jmadem welfare(utilitarian) and the weights
of each utility function, wl and wp, are defined as specified above.

13

The best choice, considering the monomodal case is Ti = {〈monday, 15〉},
with a value of 3.0; while Ti = {〈monday, 11〉, 〈tuesday, 11〉} with a value of
2.0, is the best solution for the multimodal case. The winner determination will
depend on the weights applied to each utility function. For example, if the host
agent sets the personal weight wp = 0.5 and the labor one wl = 0.5, then the
winner allocation will be max(0.5 × 3.0, 0.5 × 2.0), and the labor modality will
govern the result (Monday at 15). However it is easy to realize that if personal
constraints are considered more important (for instance, wp > 0.6), the winner
allocation will change to the other one (Monday or Tuesday at 11).

Figure 2 shows the weighted success ratio η computed using the number of
attendants ρi. For this running, the set of agents A contains: the director, 20
teacher agents, 20 father agents and 20 father worker agents. It can be
seen how the average number of attendants is higher when applying multimodal-
ity, as it offers intermediate solutions between both laboral and personal points
of view.

Fig. 2. Performance of the Meeting Scheduling Problem

5 Conclusions and Future work

In this paper we have shown the new version of the J-MADeM library, which
is endowed with an AgentSpeak(L) layer for the implementation of multimodal
social decisions in Jason. We have tested it with various examples: the gold-
miners, a virtual university bar, and a Meeting Scheduling Problem. J-MADeM

14

v.1.1 has demonstrated through these examples to accelerate the development
process. It also offers the developer with the possibility to choose the more
adequate way for implementing utility functions and the auctioning process,
ranging from Java based efficient solutions to AgentSpeak(L) based declarative
ones, as shown in the examples.

The use of J-MADeM v.1.1 suggests new directions for future research taking
into account the intentional learning framework [12, 13], where AgentSpeak(L)
agents can learn reasons to adopt and abandon intentions for the benefit of their
commitment strategies. MADeM data stated declaratively, enable the agents to
build first-order trainning examples required for the framework and to communi-
cate effectively for performing social learning. Dynamic adaptative multimodal
social decision procedures are envisaged from this perspective.

Acknowledgements

This work has been jointly supported by the Spanish MEC and the European
Commission FEDER funds, under grants Consolider-Ingenio 2010 CSD2006-
00046, TIN2009-14475-C04-04 and JC2009-00342. The last author is supported
by Conacyt CB-2007-78910 fundings.

References

1. R. H. Bordini, J. F. Hübner, and M. Wooldrige. Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, 2007.

2. Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet, J. Pad-
get, S. Phelps, J. A. Rodriguez-Aguilar, and P. Sousa. Issues in multiagent resource
allocation. Informatica, 30:3–31, 2006.

3. R. Conte and C. Castelfranchi. Cognitive and Social Action. UCL Press, London,
1995.

4. K. S. Decker. Simulating Organizations: Computational Models of Institutions and
Groups, chapter Task environment centered simulation, pages 105–128. AAAI
Press / MIT Press, Menlo Park, 1998.

5. V. Dignum and F. Dignum. Modelling agent societies: Co-ordination frameworks
and institutions. In P. Brazdil and A. Jorge, editors, Procs. of the 10th Portuguese
Conference on Artficial Intelligence (EPIA’01), volume 2258 of LNAI, pages 191–
204, Berlin, 2001. Springer.

6. R. Falcone, G. Pezzulo, C. Castelfranchi, and G. Calvi. Why a cognitive trustier
performs better: Simulating trust-based contract nets. In Proc. of AAMAS’04:
Autonomous Agents and Multi-Agent Systems, pages 1392–1393. ACM, 2004.

7. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organi-
zations in multi-agents systems. In Proc. of the 3rd International Conference on
Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Press, 1998.

8. M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lon. Simulating Organizations:
Computational Models of Institutions and Groups, chapter An organizational on-
tology for enterprise modeling., pages 131–152. AAAI Press / MIT Press, Menlo
Park, 1998.

15

9. F. Grimaldo, M. Lozano, and F. Barber. MADeM: a multi-modal decision making
for social MAS. In Proc. of AAMAS’08: Autonomous Agents and Multi-Agent
Systems, pages 183–190. ACM, 2008.

10. F. Grimaldo, M. Lozano, and F. Barber. J-MADeM, an open-source library for so-
cial decision-making. In Proc. of CCIA’09: International Conference of the Catalan
Association for Artificial Intelligence, pages 207–214. IOS Press, 2009.

11. F. Grimaldo, M. Lozano, and F. Barber. J-MADeM, a market based model for
complex decision problems. Logic Journal of IGPL. doi:10.1093/jigpal/jzq028,
2010.

12. A. Guerra-Hernández, A. El-Fallah-Seghrouchni, and H. Soldano. Learning in
BDI Multi-agent Systems. In J. Dix and J. Leite, editors, Computational Logic in
Multi-Agent Systems: 4th International Workshop, CLIMA IV, Fort Lauderdale,
FL, USA, January 6–7, 2004, Revised and Selected Papers, volume 3259 of Lecture
Notes in Computer Science, pages 218–233, Berlin Heidelberg, 2004. Springer-
Verlag.

13. A. Guerra-Hernández and G. Ort́ız-Hernández. Toward BDI sapient agents: Learn-
ing intentionally. In R. V. M. V. Mayorga and L. I. Perlovsky, editors, Toward Ar-
tificial Sapience: Principles and Methods for Wise Systems, pages 77–91. Springer,
London, 2008.

14. J. F. Hübner, J. S. Sichman, and O. Boissier. Developing organised multi-agent
systems using the Moise+ model: Programming issues at the system and agent
levels. International Journal of Agent-Oriented Software Engineering, 1(3/4):370–
395, 2007.

15. M. Prietula, K. Carley, and L. Gasser, editors. Simulating Organizations: Compu-
tational Models of Institutions and Groups. AAAI Press / MIT press, 1998.

16. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In S. Verlag, editor, Proc. of MAAMAW’96, number 1038 in LNAI, pages 42–55,
1996.

17. T. W. Sandholm. Distributed Rational Decision Making. In G. Weiss, editor, Mul-
tiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pages
201–258. The MIT Press, Cambridge, MA, USA, 1999.

18. J. Sichman and Y. Demazeau. On social reasoning in multi-agent systems. Revista
Ibero-Americana de Inteligencia Artificial, 13:68–84, 2001.

19. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research,
7:83–124, 1997.

