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Abstract. This paper presents a set of mechanisms oriented to incorpo-
rate social information into the decision taking of task-oriented 3DIVA.
The aim of this approach is to integrate collaborative skills in different
character’s roles (seller/buyer, worker, pedestrian, etc.) in order to en-
hance its behavioral animation. The collective intelligence expected in
this kind of multi-character domains (e.g. storytelling, urban simulation,
interactive games, etc.) requires agents able to dialogue/interact with
other characters, to autonomously group/ungroup (according to their
goals), or to distribute tasks and coordinate their execution for solving
possible conflicts. The social model implemented follows the definitions
for collaborative agents, since agents use communicative acts to cooper-
ate. In this context, collaboration derives mainly from two points: team
formation (grouping for 3DIVA) and task coordination (reducing depen-
dences between agent activities). Finally, we show the results obtained in
3D multi-character simulations (resource competition), created to verify
the social behavior introduced.

1 Introduction and related work

Artificial worlds inhabited by 3D Intelligent Virtual Agents (3DIVA) can be con-
sidered as Multi-Agent Systems [10] where a number of actors deal with a finite
number of shared resources. They are applications where collective intelligence
arises as the result of the interaction established between characters that cannot
avoid the social aspects of the behavioral animation problem.

3DIVA spectrum comprises a huge range of actors with different features.
We basically identify two trends. On one side, we find reactive agents; from the
classical boids introduced by Reynolds [18] up to more sophisticated crowds [20].
They can animate crowd behavior, normally reduced to movement generation
and reactive actions, since individuals are so simple that their operation is quite
limited. On the other side, deliberative agents, such as Jack [19] or Steve [9],
can execute complicated tasks but they are not really designed to autonomously
collaborate with their peers. Somewhere in between, interactive storytelling and
? Supported by the Spanish MCYT under TIC-2003-08154-C06-04



other group simulation scenarios tend to reproduce a global approach in which
interactions and communications are normally script driven [17] or predefined
by the “author” [6]. Therefore, virtual worlds lack characters intelligent enough
to autonomously animate conversations (e.g. manage non expected meetings
between two characters).

The simulation of a number of task-oriented agents (devoted to accomplish
some tasks/goals in the environment) easily falls in conflictive domains even
though the goals are compatible [10]. Obstruction situations then appear when
characters compete for the use of shared resources (3D objects). Bearing this in
mind, we identify the need to integrate social mechanisms in order to enrich the
agent-centered decision making.

Three main problems appear when dealing with inhabited Intelligent Virtual
Environments (IVE): communication, coordination and cooperation. Regarding
to the first one, two capital Agent Communication Languages (ACL) have been
developed; KQML and FIPA ACL. Both define communication between agents
as an asynchronous exchange of messages, known as speech-acts. For instance,
3D BDI actors in [11] use FIPA ACL for the internal control of the agent.
Unfortunately, interaction does not take place between 3D actors inside the
virtual world but between the internal modules that constitute an individual.
On the other side, Benford has a system that allows communication inside a
crowd [2]. However, the process is controlled by an specific Third Party Object
and the basic scenario is then formed by three objects.

Different formalisms can be used in order to achieve multi-agent coordination:
tuple centers (which follow a blackboard model that do not reflect the peer-
to-peer communication we are interested in), interaction protocols and ACL
semantics. Nevertheless, all of them have their weaknesses when dealing with
complex situations [3]. For example, Multiagent Planning Language (MAPL) [4]
uses speech-acts to synchronize planned tasks. As the control over each resource
is assigned to a unique agent, the model supports communication and coordi-
nation but it does not cooperate nor compete for common resources (as 3DIVA
requires). Another example of coordination mechanisms intended for assisting in
scheduling activities is Generalized Partial Global Planning (GPGP) [8]. In this
approach, static tree structures describing the operational procedure are shared
between the characters which merge the meta-plans and figure out the better
action order to maximize global utility. As stated in [10], this solution has a
limitation in the number of agents trying to make a coherent global plan and
it is not very good at facing not planned situations which are quite common
in dynamic and unpredictable environments (e.g. unexpected meetings between
characters).

Collaborative planning has been deployed in several different domains. In
SharedPlans [13], agents must have previously agreed about a common high-
level team model and also about certain procedures (e.g. to assign agents and
subgroups to subactions) to complete partial actions and plans, thus perform-
ing the group decision making. In STEAM architecture [21], oppositely, team
formation and conflict resolution are governed by a leader. Besides, once role



allocation is done, team members are supposed to perform their tasks indepen-
dently. Nevertheless, this ideal situation is not commonly found in shared worlds
where actors interfere while executing their actions. Lastly, virtual platoons in
the RETSINA system [12] support multi-agent collaboration, thanks to the use
of a planner that has all communicative acts predefined inside Hierarchical Task
Networks (similar to storytelling approaches). Communication is then used to
synchronize tasks and punctually manage conflicts but there is no conversational
animation designed to get information and create an internal representation of
the other agent that can be considered for future decisions.

mVITAL [1] and SimHuman [23] appear as two close systems in the litera-
ture of virtual humans but they are not focused on collaborative 3DIVA. The
system presented in this paper, though, follows the Co-X definitions for agent
interactions [22] and it exhibits Collaboration. That is, it uses both Conver-
sation (direct peer-peer communication) and Cooperation (joint intent on the
part of the individual agents) to face topics such as organizational techniques
(grouping), task distribution, coordination, conflict resolution, etc.

The next section reviews the general requirements needed by task-oriented
agents in order to extend their planning modules with social skills. We focus on
two collaborative mechanisms: teamwork and task coordination. The solutions
implemented for these two issues are the subject matter of section 3. Section
4 shows the first results obtained in 3D multi-character environments where
resource competition is used to verify the social mechanisms introduced. Finally,
we state our conclusions and future work.

2 Requirements for social 3DIVA

Complex IVE (e.g. urban domains) need the instantiation of autonomous 3D
actors performing different client/server roles; for instance: virtual waiters in a
crowded bar, assistants in a virtual museum, and obviously the corresponding
customers. This kind of characters face situations that require the animation
of dialogues as well as the ability to develop relationships and use them in a
proactive way.

We emphasize three different interaction situations while simulating this type
of social roles: resource competition, grouping between actors (i.e. create and
destroy groups to fulfill certain objectives) and joint task execution (e.g. carry
heavy objects by two actors). To resolve them, agents need to embed a planning
system able to recognize the lack of information and to manage communication in
an autonomous way. This article is focused on the team formation protocol that
the characters use to create groups as well as the task coordination mechanism
implemented to reduce conflicts when competing for shared objects. Joint task
execution is out of the scope of this paper.

2.1 Grouping between actors

The Joint Intentions Theory [7] states that a team is created when each agent
commits to a goal and receives notification about the commitment of the remain-



ing individuals. However, the theory does not consider important aspects such
as how actors arrive at this point, that is, how a team objective is acquired. Sys-
tems doing team work have generally avoided this problem by settling the teams
beforehand and giving the agents the awareness of being part of the group [13,
12]. This persistent definition of teams, though, is unsuitable in some 3D simula-
tions, where characters can change their roles and make temporary associations
to better fulfill parts of their global goal (e.g. ephemeral associations in [5]). In
these scenarios, groups can be dynamically formed and disintegrated (i.e. new
agents join the group while some others decide to leave).

For example, a 3D construction domain could be inhabited by a number of
foremen and laborers that work together to build a virtual space. Sociability can
appear when several virtual laborers are assigned the same objective (e.g. make
concrete) by different foremen. Initially, they might be unaware of that common
assignment, therefore, there would not be a formed team and agents will act
independently. But, as soon as they realize their common goal, they will jointly
commit to it and resource competition between the partners of the group will
consequently be relaxed. That is, one agent’s planning process must consider the
other members of the group.

To animate this behavior, independent characters first need to detect when
their operation is being affected or interrupted by the actions of other individ-
uals 3. Once this communication need is identified (i.e. a precondition has been
violated), the agents can manage the situation by: a) initiate a conversation, b)
exchange their individual goals, c) detect compatibility between them, and d),
decide whether to be part of a group or to leave it. In the next section we will
present the team formation protocol defined to implement these aspects.

2.2 Task coordination

As mentioned before, resource competition is managed through the use of a task
coordination mechanism. Despite the fact that some scenarios tend to reproduce
task-independent actors, this constitutes a strong simplification which will di-
rectly affect the quality of the resulting animation. Actions being performed by
task-oriented agents can be dependent, in these situations, their execution will
affect the operation of other 3D actors and will generate coordination problems.
Hence, coordination can be defined as managing dependences between activities
[16].

Basically, coordination mechanisms are based on an information gathering
stage, followed by the processing of the data previously exchanged. To minimize
the normal dependency problems in multi-activity simulations with shared re-
sources, the participants should complete the perceived state with the activities
already planned by other characters. In this manner, the embedded planning
formalism will be more informed to select a proper task that reduces interfer-
ence (e.g. one barman will attend other customers while the desired bottle is

3 In STRIPS-based planners, this can be achieved by regularly checking the precon-
ditions of the current task



being used by another barman).Task coordination within a group will require
an internal publication of the ongoing tasks, so that, members of a team can
avoid interfering or disturbing their mates (see sections 3.3 and 4).

We have designed another way to avoid the dependences between the activi-
ties of two agents: to partition the goal set, so agents try to accomplish different
independent subgoals. Unfortunately, identifying the independence of subgoals
may be as difficult as the planning process itself and it is not generally affordable
for a 3D agent. Therefore, we have defined an estimator to help task coordination
attending to the objects involved in the set of facts that define the final goal.
This heuristic obtains a good partitioning although it is not guaranteed that the
subgoals are independent.

Goal partitioning: We say two facts f1 and f2 are related (f1 ∼ f2) if both
refer to a common object (see equation 14). Therefore, the partition of a set of
facts (S) will be given by the quotient set of this relation: S/∼.

f1 ∼ f2 iff ∃o : (f1(o, o′) ∨ f1(o′, o)) ∧ ((f2(o, o′′) ∨ f2(o′′, o)) (1)

Using this definition each agent can divide his goal in a set of “near indepen-
dent” subgoals. The aim of this approach is to relax the dependencies between
activities being performed by the actors. According to this, when two agents
compete for the use of some shared objects, they use goal partitioning and try
to select independent subgoals (see section 4).

3 Social model

Agents presented in [15] suffer from autonomous communication modules to
coordinate their actuation or exchange information with their partners. Thus,
the behavioral consistency of the multi-agent animations can be poor. According
to this, we have extended the previous agent centered architecture in order to
allow social characters to work together in a common scenario.

Our multi-agent animation system follows a distributed architecture. This
modular structure separates the graphics engine and its semantic database (Un-
real Tournament) from the deliberative agents. These are in charge of controlling
the actuation of the 3D actor inside the virtual world thanks to the use of an
heuristic planner. The collaborative features developed for our characters and
presented in this paper are based on a communication model [14] in which the en-
vironment acts as a transmission channel (similarly to the air in the real world).
Therefore, communication can be considered as an action carried out through-
out the world; that allows us to design message filters depending on distance
to other agents, presence of walls, etc. Opposite to blackboard systems, the en-
vironment directly delivers the ACL structured messages between the agents,
which animate the conversation.
4 This definition is for facts of arity 2, but it can be easily extended to any fact



The social model embedded is composed by three mechanisms: a Conversa-
tional Task Controller, which permits agents to handle conversations with their
peers (point 3.1); a team formation protocol, that assess the convenience of be-
ing part of a group (point 3.2); and a task coordination mechanism, in charge of
reducing conflicts while competing for shared resources (point 3.3).

3.1 Conversational Task Controller

The Task Controller governs the agent activity at anytime and it decides what to
do depending on the agent and world states. This Finite State Machine (FSM)
incorporates several states to control conversations between characters, hence,
it is able to animate the behavior of 3D actors with social skills. As shown in
figure 1, after having reached a comfortable position to speak (REACH AGENT
brings the conversers near), agents will alternatively TALK and LISTEN. These
two states allow the agents to generate the typical query/response interchange
to gather information. This FSM can only manage one conversation at the same
time, thus, agents already part of a dialogue will deny another proposal of in-
teraction.

Fig. 1. Conversational Task Controller

One important aspect is when to start a conversation. The need of communi-
cation is generated when an action fails due to the interference of another agent
(e.g. an actor takes an object that another character wanted to pick). This situ-
ation is resolved by conversing with the character who interfered in the success
of the execution. Within this dialogue, the agents will communicate their cur-
rent occupation (i.e. send their current STRIPS task, for example, move Chair 1



from Bedroom to Kitchen) so that task coordination can be applied further on,
as we will explain in point 3.3.

3.2 Team formation

The aim of grouping is to reduce interagent interference and to enhance the
quality of the behavioral animation. Whereas non interfering agents do not nor-
mally need to agree to reach their goals, others interrupting their operation will
need to consider the possibility of temporarily creating a group to better fulfill
their tasks and achieve their goals. This evaluation will be done through a team
formation protocol which is based on a goal checking between agents. Say agent
A and B have goals composed by a set of facts (GA = {fi}, GB = {fj}), then,
three different types of situations are distinguished:

– A couple of agents have fully related goals when they share the same set of
facts (GA = GB) or when the facts of one of them are a subset of the facts
of the other one (GA ⊂ GB or GA ⊃ GB).

– The goals are partially related when the intersection is not complete and
there are still some facts solely ascribed to one agent (GA ∩GB 6= φ).

– The goals are non related when there is no intersection between the goals
(GA ∩GB = φ).

Fully related goals can be problematic, as the close relationship of the ob-
jectives could produce many dependences and conflicts during the simultaneous
execution (e.g. all the agents want the same objects at the same time). Accord-
ing to this, candidates to form a group will use goal matching in their team
formation protocol and will create a group when their goals are fully related.

For instance, one possible extension of the funny dinner-date problem [6] can
consist on some 3D actors cleaning up a flat. More precisely, the owner could
want to clean the whole flat, while two more friends would only help in some
tasks (see figure 2). In this scenario, agent A can join agent B to dust the kitchen
and agent C to polish the hall. However, transitivity cannot be applied when
forming groups. Even though GA and GB are fully related, GB and GC are non
related, as a consequence, B joins A but not C. Thus, team formation protocol
is limited to decide if two 3D actors cooperate, without affecting previous com-
mitments. Nevertheless, multi-agent teams can be reproduced due to the fact
that characters can separately create as many couples as needed.

The ability to coordinate groups is a key point to produce consistent and
lifelike simulations. We consider cooperation as an internal intentional posture
of the agents, therefore, while being part of a team, they will continuously com-
municate their intentions 5 to their mates in order to facilitate task coordination.
Knowing at all times the current actions of the teammates will prevent constant
obstruction between characters.

Finally, characters should also be able to leave their teams, that is, they have
to communicate their departure of the group when necessary. This occurs when
5 Their current task is used to consider the actual intention



Fig. 2. Example of the goals of three agents cleaning up a flat. Intersection relationships
between their goals impede to apply transitivity in the team formation protocol.

their goal is no longer fully related with the objectives of the community (e.g. a
foreman orders a laborer to change his personal goal).

3.3 Coordinated Task-Oriented agents

Task-oriented agents can coordinate their operation if they know the intentions
of their surrounding mates. The information about the ongoing actions that
other characters intend to complete can be used to manage the constraints im-
posed by them. In order to represent the operation of external agents, 3D actors
need an extended memory model that, aside from the perceived state of the en-
vironment, holds a set of communicative beliefs (c beliefs) acquired through the
conversations established with other cohabitants of the virtual world (see figure
3).

Fig. 3. Coordination model



A c belief corresponds to a task being executed at this moment by another
character. Two aspects appear when working with c beliefs:

– Whether to trust another character about his current task is an important
issue, because it could lead the actor to an incongruent mental state. Due
to the reactive nature of our planning formalism, an actor should not think,
for example, that one partner will successfully open a door while a second
one is going to close the same door; since he does not know their timing. In
this way, all the operators being communicated by external agents will not
become a c belief in the memory. Instead, after receiving a communication
message, the agent will check the compatibility of the new information with
the c beliefs already stored. This checking is based on the resources, which
will be locked when an agent has a c belief above them (see Mark signal in
figure 3). Therefore, when an agent tries to match a new operator, if it uses
a locked resource, it will be considered incompatible and it will be discarded.
Hence, the actor trusts the first agent who notified his intents and avoids
conflicts that might happen with later c beliefs.

– When to remove a c belief from the memory is another problem. However,
as characters are continuously perceiving the state of the world, they can
contrast the sensorized information against the preconditions of the current
c beliefs and delete them when they are not true (Invalidate signal in figure
3).

This new information, stored inside the memory, can be used by the planning
formalisms of the agent to generate coordinated plans. As previously exposed,
characters are benevolent and their intention is to let the others finish their pre-
vious commitments. Following this premise, the miniMin-HSP planner used by
our 3DIVA [15] will now start the search from a future virtual state resulted
from applying the c beliefs over the current perceived state (this mental execu-
tion uses the add and delete lists of the STRIPS definition for the the external
ongoing actions).In this manner, it constructs a prospective situation that skips
actual dependences. Additionally, each c belief will lock the objects being used
by other agents thereby forbidding to jeopardize the success of the tasks previ-
ously initiated (see figure 3).

4 Results

In order to verify the techniques previously explained, we have executed several
simulations in a structured 3D environment where agents perceive local informa-
tion (in a room domain) from their synthetic vision sensors [14]. This simulation
framework can reproduce social worlds where 3DIVA deal with interactive situ-
ations (e.g. urban, building or home-based scenarios).

As a motivating example, we present a problem of multi-character resource
allocation (inspired by the funny dinner-date problem), where agents compete
for the use of shared objects. Objects can be moved using the move operator,
which is composed by two tasks: pick object and drop object. These operators



are similar to the ones defined in the classical blocks world, however, in this case
we have limited resources. For example, a table can only have one object on it
and not infinite objects (as happens in the classical problem), and also an agent
may have an object occupied (i.e. picked) so no one else can use it.

In the problem presented in figure 4, the characters have to organize a flat
composed of four rooms. Snapshot 4a shows a situation with three agents in
where: Agent 1 wants to put all the books in room number 4; Agent 2 desires to
move each plant to room 3; and finally, Agent 3 has the two previous objectives
as well as stacking the boxes together (this goal is partitioned into three inde-
pendent subgoals). At first, agents are unaware of the others’ goals but they will
gather data during the simulation thanks to the dialogues established between
them when an interruption occurs. This is the case of 4b, where Agent 1 wanted
to move away the plant that was on top of the books but Agent 2 takes it first.
In this situation, since goals are clearly independent they reject to form a group
and continue their actuation but knowing the new information about the current
task that has been exchanged. Nevertheless, agents with fully related goals will
create groups, this is the result of the competition for the book between Agent 1
and Agent 3 in 4c. While they are a group, task coordination is continuously
applied. According to this, as Agent 1 informs his partner about his current
task when he moves the book to room 4 in snapshot 4d, Agent 3 can change to
another subgoal and avoid interferences (e.g. pile boxes up instead of trying to
pick the book as well).

Fig. 4. Snapshots of Team formation and Task Coordination within a 3D IVE.

As stated in [10], cooperation can be measured by three indicators: survival,
performance improvement and conflict resolution. According to this, we have



executed some simulations over a 3D blocks world scenario where four agents try
to perform a common goal. The survival indicator has no sense in this problem as
all agents achieve their goals. We have estimated performance improvement by
the amount of executed tasks (TE) and the number of planner invocations (PC).
Finally, conflict resolution is estimated by the number of plan interruptions (PI).
Table 1 resumes the results obtained.

PC PI TE
Agent Simple Collaborative Simple Collaborative Simple Collaborative

A 14 13 4 5 10 8
B 9 5 3 2 6 3
C 15 9 4 2 11 7
D 15 6 7 2 8 4

PC = Planner Calls, PI = Plans Interrupted, TE = Task executed
Table 1. 3D blocks world problem results with and without collaboration

Although one single character successfully allocates all the resources in 14
steps, non-communicative individuals need the execution of 35 tasks. The exe-
cution of many more tasks than the optimal number needed to complete a goal
implies that the simulation will be less realistic. With communicative actors,
multi-agent performance can be enhanced as they lower this number down to 22
non-conflictive tasks. Despite the fact that the total number of tasks is not op-
timal, the final goal is reached faster due to the simultaneous execution. On the
other hand, social agents need to invoke their planner less times than the simple
ones (see column PC), whose plans are interrupted more frequently (see column
PI). To sum up, the new way of planning reduces the number of interferences
and produces a coordinated set of tasks whose execution can be overlapped.

5 Conclusions and future work

In this paper we have described a system able to introduce social skills in multi-
agent environments. These abilities appear derive from the use of collaborative
techniques based on message passing (communication) and the implementation
of an extended model of memory that stores the operation of external agents
(cooperation). The social model presented is composed by the team formation
protocol and the task coordination mechanism that allows 3DIVA to manage
dependences, resolve conflicts and enhance the behavioral performance when
competing for resources. The first results show the efficiency obtained thanks
to the use of goal partitioning and the application of communicative beliefs
(c beliefs) to generate coordinated plans. Besides, action interferences are clearly
reduced when characters can create groups to achieve a common set of goals.

There is still work in progress in order to evaluate our agent model in more
complex scenarios and roles. For example, joint task execution (i.e. operators



carried out by more than one agent) needs plenty of communication between
the individuals that perform the actions. Currently, dialogs are fully dependent
on the planning in the sense that 3D actors interact solely with the objective
of gathering information to better fulfill their goals. However, a greater number
of dialogues have to be implemented over the Conversational Task Controller so
that characters can animate different conversations.
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