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Introduction

The problem of modelling extreme values is of great interest in many environ-
mental studies. Among these we have certain natural phenomena e.g. waves, winds,
temperatures or earthquakes. In this work we study the annual maximum flood of the
River Nidd at Hunsingore Weir (England). Data consist on 154 exceedances over the
level 65m3/sec. from 1934 to 1969 (35 years) (source: Natural Environment Research,
1975). This data set is one of the most studied in statistical extreme value approach,
and among various work on this data set we compare our results with those in Davison
and Smith (1990). In this work we propose a default Bayesian procedure in order to
estimate future high levels of the River Nidd.

Methods

The most known model to study extreme-value data is based on the family of
generalized extreme value distributions (see Galambos 1981). This family of distribu-
tions is appropriate when the data only consist of a set of maxima. For the data set we
study there is a loss of information if only maxima were considered. We concentrate
on modelling the exceedances over a fixed threshold u. Pickands (1975) showed that
the Generalized Pareto Distribution (GPD) is the distribution for the exceedances
over a u, when u is sufficiently large. The GPD is governed by two parameters, a
scale and a shape parameter. This distribution generalizes different families of better
known distributions according to the values assumed by the shape parameter. For
example when the shape parameters is 0 the GPD is the Exponential distribution,
when the shape parameter is -1 the GPD is the Uniform distribution and when it is
positive the GPD is the Pareto distribution.

It is interesting to study the sign of the shape parameter, because negative values
indicate that the exceedances may have an upper bound.

The estimates of both scale and shape parameters are generally difficult to obtain
due to the fact that the support of the likelihood depends on the observed data.
Smith (1984) showed that when the shape parameter is larger than -0.5 the likelihood
is regular, in the sense that exists the Fisher information matrix.



60 A Default Bayesian analysis of the Nidd River data

For the set of values where the Likelihood is regular we propose a Bayesian approa-
ch to estimate the posterior distribution of the scale and shape parameters of GPD.
In particular we calculate the Jeffreys’s prior (improper for the scale parameter) and
show that the posterior is always proper. In this way the predictive distribution of
the exceedances or the posterior distribution of the shape parameter can be used to
estimate future high levels of the river.

Bayesian methods for estimating the GPD parameters have not been excessively
explored probably due to the irregularity of the likelihood. The most relevant work,
in a non informative context, is contained in de Zea Bermudez and Amaral Turkman
(2003), while Arnold and Press (1989) only studied Bayesian inference for the Pareto
distribution. de Zea Bermudez and Amaral Turkman (2003) proposed to use the
posterior means using two independent priors for negative and positive values of the
shape parameter. This lead to a procedure which is always biased when the shape
parameter is zero and it does not allow to test the sign of the shape parameter.

Two problems are not touched in this work: the first is how to assess the goodness-
of-fit of GPD and the second is the optimal choice of initial threshold. Therefore we
assume the GPD is a reasonable model for the observed exceedances and that the
uncertainty is left only on GPD’s parameters.

We compare the posterior means and medians with other Bayesian approach (de
Zea Bermudez and Amaral Turkman, 2003) as well as non Bayesian procedures to
estimate the unknown parameters of GPD. In particular we consider maximum likeli-
hood estimators (MLE) (Grimshaw, 1993), probability-weighted moments estimators
(Hosking and Wallis, 1987) and estimators based on the elemental percentile method
of Castillo and Hadi (1997).

Results

We provide a Markov Chain Monte Carlo algorithm to estimate the posterior
distribution. The algorithm uses a moving proposal distribution for a Metropolis-
Hastings step nested in two Gibbs steps.

We use a parametric bootstrap in order to estimate the BIAS and Mean Squa-
red Error (MSE) of the posterior means and medians and compare them with other
estimators. We obtain basically the same BIAS and MSE of other commonly used
estimators.

We apply the procedure at different thresholds (higher than 65m3/sec.) of the
water level of the Nidd River. We predict future observations using the K-year return
level, defined as that level which is exceeded on average once in K years (we consider
K=25, 50 and 100 years). Using a Bayesian approach it is straightforward to obtain
the posterior distribution of the K-year return level. We found that this posterior
distribution have larger variability than those obtained using a frequentist approach
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(Davison and Smith, 1990). This is reasonable because we are taking into account
parameter uncertainty which is, of course, not considered in a MLE approach such
as those in Davison and Smith (1990). Finally we calculate the posterior odd on the
existence of an upper bound for the Nidd River levels, provided that the prior odd is
1. In particular we find that the higher is the threshold, the higher is the evidence for
the existence of an upper bound.

Conclusions

We think that the problem of the choice of the prior distribution on shape and scale
parameter of GPD is still open, because expert elicitation is very difficult to obtain
due to the lack of any physical interpretation of GPD parameters. Furthermore non-
informative priors makes prediction of future observations quite problematic for two
reasons: a) the prior variability of GPD parameters is larger than those induced by an
informative prior, moreover b) the sample size is usually very small because extreme
values are usually regarded as rare events.
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