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Introduction

   Implemented a CNN for the search of low and high mass CBC events.
 Paper with O2 results accepted in Phys. Rev. D (Phys. Rev. D 103, 062004 arXiv:2012.10702 ).
 Based on the ResNet50 architecture (arxiv:1512.03385).
 The CNN is trained using O2 LIGO/Virgo Data.
 We study the performance using one and two interferometers as input.
 We want to achieve the highest fraction of detection possible with the lowest amount of 

false positives.

https://arxiv.org/abs/2012.10702
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Input data: Training set

   The training set is generated by creating waveforms using the model IMRPhenomPv2.

 For these templates we vary 7 parameters.
 Parameters are drawn from a uniform

distribution.
 The parameter space is divided in two regions: low and high mass.
 The limits in the distance are set accordingly.
● For the low mass case the constraint  d

Eff
 < 60 Mpc is added.

 Waveforms are added to O2 
data, whitened, sliced in 5s 
intervals and transformed into a 
spectrogram.

 Background images are 
processed in the same way.

Initial End

Masses (M
ʘ
) 0.19 2.0

Distance (Mpc) 1 50

Right ascension (rad) 0 2π

Declination (rad) 0 π

Polarization (rad) 0 π

Inclination (rad) 0 π/2

Number of signals 160,000

Initial End

Masses (M
ʘ
) 25 100

Distance (Mpc) 100 1000

Right ascension (rad) 0 2π

Declination (rad) 0 π

Polarization (rad) 0 π

Inclination (rad) 0 π/2

Number of signals 160,000
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Input data: Additional preprocessing

   Inside the ResNet50 architecture there are batch normalization layers.

 Standarization of the data is needed to achieve good performance due to these layers.
● The spectrograms are 

represented by a matrix.
● For each spectrogram we 

estimate the mean value and 
standard deviation of the 
matrix.

● We substract the matrix by 
the mean and divide by the 
standard deviation.

● Only affects the scale
● Images are now ready to be 

used in the CNN.
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Training and testing

 

 128k Images per interferometer are used, 63% training, 7% validation and 30% testing.
 For each CNN we estimate the ROC (Receiver Operating Characteristic) curve to 

characterize its performance.
 This performance is described by the True 

Positive Rate (TPR) and the False Positive 
Rate (FPR).

 These values depend on the threshold. 
This threshold is defined as the 
output such that the CNN has a rate of 25
fakes per day.
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Testing – Injection test

  Injection test are carried out to understand the performance of the 
CNN for a signal with a given signal-to-noise ratio (ρT).

 ρ is estimated by numerically solving the integral .

 A Tukey window with alpha 1/9 is applied.

 From these test we find that the high mass CNN becomes fully 
efficient around 8 and the low mass at 16.
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O2 Scan

   Using these trainings and the thresholds we ran the CNNs over O2 data.

 For each combination we search for the times where both interferometers are online and 
in science data taking mode.

 These images were processed in the same way as the simulated events.

 Only difference is that between two consecutive images there is an overlap of 2.5s.

 The ratio of false positives per day achieved is slightly higher than our limit of 25 per day.

 This indicates that the CNNs are triggering on noisy events.
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O2 Scan – Results 
 We also test the CNNs over the events from the first observation run (O1).

 All the events that are in the scope of the training are detected by the CNNs.

 The missed events have masses out of the training range.

 Comparing the significance of the rest of the triggers of our CNNs we found that a large 
majority are also detected by the pyCBC pipeline
with a signal-to-noise ratio between 6 and 8.

 This indicates that the CNNs  are performing similarly
 to the first steps of dedicated pipelines.
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Improving the false rate

 

 The excess of false rates can be decreased by combining the 
output of the NNs for pairs and single interferometers.

 To each image we assign as value for the discriminant, P
imag

, 

the average of the different outputs: P
imag

=(P
2ITF

+P
ITF1

+P
ITF2

)/3.
 Chirp like glitches due to being visible only in one interferometer will 

have P
2ITF

~1 and P
ITF1

~1 but P
ITF2

~0.

 This allows us to have much more control over the false rate. 
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Effects on O2 scan

 
 The discriminant for some events decreases noticeably and some accuracy is lost.
 However by using this method, the amount of fakes is sharply reduced.
 There is a trade-off between accuracy and purity of our CNNs.
 In the tables you can see the difference in performance achieved by using this method for 

arbitrary thresholds → .9 for low mass and .8 for high mass.
 The level of reduction in the fake rate can go

as high as 41 times lower than the original. CNNs response to O2 catalog

Low mass High mass

Event 2 ITFs Value Combined 2 ITFs Value Combined

GW170104 0.001 0.13 1.0 1.0

GW170608 0.02 0.39 0.008 0.06

GW170729 0.1 0.34 1.0 1.0

GW170809 0.15 0.41 1.0 0.88

GW170814 0.01 0.43 1.0 1.0

GW170817 1.0 0.93 0.04 0.16

GW170818 0.003 0.41 1.0 0.7

GW170823 0.05 0.34 1.0 1.0
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Conclusions

 
 CNNs are usable for the detection of CBC events.
 Results published in Phys. Rev. D 103, 062004.

 The O2 catalog events in the scope of the training were properly detected.

 The performance can be improved by combining the output from different CNNs.

 We are applying this method to O3 data.

 Working in the proper estimation of the significance for each image.

 Plan to test the CNNs online.
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