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Goal of the paper

● We use the gravitational wave (GW) events GW170817 and GW190521, together with 
their proposed electromagnetic counterparts, to constrain cosmological parameters 
and theories of gravity beyond General Relativity (GR).

● We consider time-varying Planck mass, large extra-dimensions and a 
phenomenological parametrization covering several beyond-GR theories. 

● In all three cases, this introduces a friction term into the GW propagation equation, 
effectively modifying the GW luminosity distance. 
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Introduction - GW
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● GR: gravity is merely an effect caused by the curvature of spacetime. 
Field equations of GR: 
where: 

    

● Einstein solved those and predicted (1916) the existence of disturbances in the 
curvature of spacetime that propagate as waves, called gravitational waves. 

● Most promising sources of GW: Compact Binaries Coalescence (CBC)
Binary Black Holes (BBH)
Binary Neutron Star (BNS) 
Neutron Star Black Hole binary (NSBH)   

● The metric of spacetime in case of a CBC, and sufficiently far away from it, is:
  

where         is the metric of the background and        is the change caused by the GW. 

    

Rμ ν−(1/2)gμ ν R=Tμ ν

•     the Ricci curvature tensor
•      the metric of spacetime
•      the Ricci scalar
•      the energy-momentum tensor
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Introduction – Detection of GW

● Small disturbances of spacetime affect the 
propagation of photons.

● LIGO/Virgo are ground based interferometers (ITF) 
designed specifically to measure tiny disturbances 
of spacetime geometry. 
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Introduction – Detection of GW

● In the plot one can see the two 
LIGO’s responses to the first GW 
detection (GW150914).
The correlation of data between 
ITF’s plays a very important role 
in the detection of GW.
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Introduction – ΛCDM 
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● The ΛCDM (CDM (Lambda cold dark matter) or 
Lambda-CDM model is a parameterization 
of the Big Bang cosmological model in
which the universe contains three major 
components:
1) a cosmological constant which is the 
energy density of space, or vacuum 
energy, denoted by Lambda (ΛCDM () 
and associates with dark energy
2) cold dark matter (CDM)
3) ordinary matter
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Introduction - H0 Tension

● The Hubble constant (H0) describes 
the rate at which the Universe is 
expanding today. 

● Several measurements of H0 are 
significantly different causing the 
famous H0 tension.

● Early measurements refer to estimations 
obtained from the analysis of the Cosmic 
Microwave Background.

● Late measurements refer to estimations 
obtained using nearby sources. 
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Introduction – Distance-redshift Relation 

● GW are standard sirens which means that we can estimate 
the luminosity distance(Dc) directly:

● If additionally we had a redshift(z) estimation then 
we could estimate cosmological parameters.
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Introduction – EM Counterpart

● In the case of an ElectroMagnetic(EM) 
counterpart detection, the redshift can 
be acquired from the identification 
of the host galaxy.

● This was the case for GW170817 [1][2].

● GW170817 is the first BNS with a detected
EM counterpart.

● This led to an accurate estimation of H0.

● GW190521 [3] is another GW event with a 
potential detected EM counterpart [4].
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H0=69
+17
−8

(68% CL)

Illustration of a BNS emitting EM during 
merger. 
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      GW170817                                        GW190521

● First BNS detected.
● Only BNS with a EM counterpart.
● Identified host galaxy is at z=0.01.
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Luminosity distance GW170817. The black 
dashed line represents the distance of the 
identified host galaxy assuming GR and Planck 
cosmology.

Line-of-sight luminosity distance for 3 different 
waveform samples. The black dashed line 
represents the distance of the potential host 
galaxy assuming GR and Planck cosmology.

● Heaviest BBH detected so far.
● Potential EM detected from a galaxy 

at z=0.438.    



EM from a BBH?

● It is speculated that this BBH was formed in the 
disk of the Active Galactic Nuclei(AGN).

● Matter from the disk started falling into the newly 
formed BH creating a jet.

● The newly formed BH started moving towards the 
outside of the AGN disk due to the kick velocity 
from the merger.

● As it moved to the upper limits of the disk, the disk 
was becoming less and less dense.

● As a result, the jet managed to pierce though 
and reached our detectors. 
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The case with no GR deviation considered
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● Test the method estimating only cosmological 
parameters assuming no GR deviation.

● Priors: H0=Uni[20, 300],       =Uni[0.2, 1.0]

● GW190521A+GW170817 results

● In agreement with measurements in the literature. 

 

 
 

    

H 0=74
+13
−7

,Ωm=0.58
+0.25
−0.25

(95% CL)

Ωm
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Modified theories of gravity - GW friction term

   

13

● Modified GR theories offer possible solutions to open issues in Standard cosmological 
model, like dark energy, H0 tension.

● Many GR modified theories include additional terms in the GW propagation equation.

● Friction term: predicted by theories with extra energy dissipation terms

● GW friction affects the luminosity distance traveled by the GW.

where       is the GW friction parameter,       the luminosity distance traveled by the GW and  
        the luminosity distance traveled by the EM.

● In GR        =0, so                   . 
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Adding GW friction - Parametrizations considered
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● The effect of the friction term in the GW distance can be parametrized.

● In this work we considered the following parametrizations:

➢     - parametrization: A parametrization based on the evolution of the Dark Energy 
content of the Universe (scalar-tensor theories in the Horndeski and Beyond 
Horndeski families) [5].

➢ Ξ – parametrization: A theory-base parametrization able to fit many modified theories 
of gravity (this is applicable for some of the following: Brans-Dicke, Horndeski, 
beyond-Horndeski, DHOST)[6].

➢ Extra dimensions: GW energy can leak in additional dimensions eventually resulting in 
a different luminosity distance[7]. 

 

 
 

    

cM
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       -parametrization
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● Is a parametrization of the friction term       :

where       is a constant and       is the
fractional dark energy density.

● In this case the distance is given by:

● Priors: H0=Uni[20, 300],     =Uni[0.2, 1.0], 
                =Uni[0,150]

● Results are consistent with Planck cosmology 
and GR.
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H0=80
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−17

,Ωm=0.6
+0.4
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, cM<13

Results using NRSur for GW190521

Ωm

cM

Significant upper limit on 
Results not yet as accurate as CMB 
limits. 

cM
(95% CL)
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Ξ - parametrization
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● For many alternative theories of gravity the GW
luminosity distance is parametrised by:

● Priors: H0=Uni[20, 300],     =Uni[0.2, 1.0], 
           Ξ=Log[0.01, 100], n=Uni[1, 10]

● Results are consistent with Planck cosmology 
and GR.
 

 

 

    

H 0=93
+148
−27

,Ωm=0.6
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(95% CL)

Results using NRSur for GW190521

Significant upper limit on Ξ.
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Extra dimensions
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● Considering the case of possible extra 
dimensions the distance is parametrized as:

● Priors: H0=Uni[20, 300], Ω=Uni[0.2, 1.0], 
           D=Uni[3,7]

● Results are compatible with GR at 2.1σ. 

 

 

 

    

H 0=167
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,Ωm=0.6
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Results using NRSur for GW190521

(95% CL)

Christos K. - Gravitational wave friction in light of GW170817 and GW190521.



Conclusions

● GW events with EM counterparts can provide a joint constrain on cosmological and GR 
deviations parameters.

● The precision on the ΛCDM (CDM parameters is not enough to solve the H0 tension.

● For the three parametrizations considered all the runs are compatible in 1−2σ confidence Level 
with GR.

● With 3G detectors we might be able to detect GW with EM at higher redshifts and improve these 
estimations.
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