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Outline

• Tachyonic Crash Course on Gravitational Waves (GWs) and gravity
theories beyond General Relativity (GR)

• The non-minimal coupling between matter and curvature (NMC)

• GWs in NMC theories
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General Relativity

Einstein-Hilbert action:

S =

∫
[κR + L]

√
−gd4x , (1)

where κ = M2
P/2, R is the Ricci scalar curvature, and L is the matter

Lagrangian density. Variation relatively to the metric gµν yields the
�eld equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2)

where Rµν is the Ricci tensor, and Tµν is the energy-momentum
tensor built from L.

Spacetime tells matter how to move
Matter tells spacetime how to curve
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What is a Gravitational Wave?

Solution of linearised Einstein's equations (although they exist at full
nonlinear theory):

gµν = ηµν + hµν → �

(
hµν −

1

2
ηµνh

)
= −8πG

c4
T (0)
µν , (3)

with h = h
µ
µ. In vacuum Tµν = 0.

Sources:

• Black Holes, Neutron Stars, and White Dwarfs binaries;

• Some in�ationary models;

• ...
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Observation of GWs
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Polarisation modes of GWs

A metric theory may present up to six polarisation states [Eardly et
al.,1973]

Two tensor modes: + and ×
polarisations;

Two scalar modes: breathing and
longitudinal modes;

Two vector modes.
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GWs in the presence of matter �elds

In GR (and theories where only the gravitational sector is modi�ed) we
can extend the analysis by resorting to Green functions' method.
Other approaches:

• the Campbell-Morgan formalism of GR (2 polarisation modes)
[Ingraham,1997];

• semiclassical theory of electromagnetic response analogue (modi�ed
dispersion relation); [Cetoli,Pethick,2011];

• Cyclotron damping and Faraday rotation in collisionless magnetised
plasmas [Gali et al 1983, Servin et al 2001];

• presence of a cosmological constant (�eld equations lose their
residual gauge freedom)[Bernabeu et al 2011, Ashtekar et al 2015].
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Why not GR?

Successes:

• Solar System constraints;

• GPS ...

But there were still some conundrums:

• Large scale data requires DM and DE;

• It lacks a consistent high energy version.

Alternative theories of gravity:

• f(R)

• Horndeski gravity;

• Jordan-Brans-Dicke;

• NMC [Bertolami, Böhmer, Harko, Lobo 2007]...
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[Gomes, PhD thesis]
[Bertolami, What if ... General Relativity is not the theory?,

2011]
9 of 22



The non-minimal coupling between matter and
curvature (NMC) [Bertolami, Böhmer, Harko, Lobo 2007]

S =

∫
[κf1 (R) + f2 (R)L]

√
−gd4x , (4)

where κ = M2
P/2.

Varying the action relatively to the metric gµν :

2 (κF1 − F2ρ)

(
Rµν −

1

2
gµνR

)
=f2Tµν + κ (f1 − F1R) gµν+

+ F2ρRgµν + 2∆µν (κF1 − F2ρ)

(5)

where Fi ≡ dfi/dR , and ∆µν ≡ ∇µ∇ν − gµν�.
One recovers GR by setting f1(R) = R and f2(R) = 1.
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Using the Bianchi identities, one �nds the covariant non-conservation
of the energy-momentum tensor:

∇µTµν =
F2

f2
(gµνL − Tµν)∇µR (6)

For a perfect �uid, the extra force due to the NMC can be expressed
as:

f µ =
1

ρ+ p

[
F2

f2
(L − p)∇νR +∇νp

]
hµν , (7)

with hµν = gµν + uµuν being the projection operator, and uµ is the
4-velocity of the �uid.
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Degeneracy-lifting of the Lagrangian choice [O. Bertolami, F. S. N.

Lobo, J. Páramos, 2008]

Mimicking Dark Matter (galaxies, clusters) [O. Bertolami, J. Páramos,

2010; O. Bertolami, P. Frazão, J. Páramos, 2013]

Cosmological Perturbations [O. Bertolami, P. Frazão, J. Páramos, 2013]

Modi�ed Layzer-Irvine equation and virial theorem [O. Bertolami, C.

Gomes, 2014]

In�ationary dynamics [C. Gomes, O. Bertolami, J.G. Rosa, 2017]

Boltzmann equation [O. Bertolami, C. Gomes, 2020]

Jeans instability [C. Gomes, 2020]

...
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Gravitational waves in NMC theories
[Bertolami, Gomes, Lobo, Eur.Phys.J.C 78 (2018) 4, 303]

Linearised �eld equations around a Minskowskian background for
L ≈ const.:

(F1 + 2F2Lm) δRµν −
1

2
ηµνF1δR −

1

2
hµν f1

− [∂µ∂ν − ηµν�]
(
δf ′ + δh′

)
= f2δTµν + F2TµνδR . (8)

and from the trace equation:

3�
(
δf ′ + δh′

)
= δf + δh , (9)

where the �uctuations:

δf ≡ (F1 − 2F2Lm + F2T ) δR , δh ≡ f2δT ,

δf ′ ≡ (F ′1 + 2F ′2Lm) δR , δh′ ≡ 2F2δLm . (10)
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Cosmological constant case, L = −Λ:

�(hµν −
1

4
hηµν) =

f1 − 2f2Λ

F1 − 2F2Λ
hµν , (11)

where the scalar mode was absorbed into the factor 1/2→ 1/4 in the
"Λ" gauge:

∂µ
[
hµν −

1

2
ηµνh − ηµν

(
δf ′ + δh′

F1 − 2F2Λ

)]
= 0 . (12)

This yields a solution of the form:

hµν = A+e ikαx
α
e+
µν + A×e ikαx

α
e×µν , (13)

where A+ and A× are the amplitudes of the �plus� and �cross�
polarisations, and e+

µν , e
×
µν are the usual polarisation tensors. The

dispersion relation reads:

kαk
α ≡ ω2 − k2 =

f1 − 2f2Λ

F1 − 2F2Λ
(14)
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And a propagating scalar mode:

�Ω = m2
ΩΩ , (15)

with

Ω ≡ δf ′

F1 − 2F2Λ
=

F ′1 − 2F ′2Λ

F1 − 2F2Λ
δR , (16)

Need for speed:

• The "speed" of the gravitational wave (from the parametrisation

ω2 = m2
g + c2gwk

2 + a k
4

∆ ) is constrained to cgw ∈ [0.55, 1.42]
[Yunes et al. 2016, Cornish et al 2017]. For these theories cgw = 1.

• the group velocity vg ≡ ∂ω
∂k ≈ 1− m2

gw

2k2
is constrained to

vg ∈ [1− 3× 10−15, 1 + 7× 10−16] [Abbott et al, 2017]. For these
theories vg → 1−.
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Dark-energy-�uid case, L = −ρ:

�(hµν −
1

4
hηµν) =

f1 − 2f2ρ

F1 − 2F2ρ
hµν , (17)

where the scalar mode was absorbed into the factor 1/2→ 1/4 in the
"Λ" gauge:

∂µ
[
hµν −

1

2
ηµνh − ηµν

(
δf ′ + δh′

F1 − 2F2Λ

)]
= 0 . (18)

This yields a solution of the form:

hµν = A+e ikαx
α
e+
µν + A×e ikαx

α
e×µν , (19)

with:

kαk
α ≡ ω2 − k2 =

f1 − 2f2ρ

F1 − 2F2ρ
(20)
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Two scalar modes which can be decoupled into:

�ωf = m2
ωf
ωf , (21)

�ωh = m2
ωh
ωh , (22)

with

ωf ≡
δf ′

F1 − 2F2ρ
=

F ′1 − 2F ′2ρ

F1 − 2F2ρ
δR , (23)

and

ωh ≡
δh′

F1 − 2F2ρ
=

−2F2
F1 − 2F2ρ

δρ . (24)

17 of 22



Newman-Penrose formalism

Complex null tetrad:

k =
1√
2

(et + ez) , l =
1√
2

(et − ez) , (25)

m =
1√
2

(ex + iey ) , �m =
1√
2

(ex − iey ) , (26)

which obey −k · l = m ·�m = 1 and k ·m = k ·�m = l ·m = l ·�m = 0,
respectively.
Note that Tabc... = Tµνλ...a

µbνcλ..., where a, b, c , . . . are vectors of
the null-complex tetrad basis (k, l,m,�m), whilst µ, ν, . . . run over the
spacetime indices.
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The Newman-Penrose quantities in the tetrad basis read
[Newman,Penrose,1962]:

NP quantities built from the
decomposition of the Riemann Tensor in
terms of irreducible parts: Weyl tensor,
Ricci tensor and scalar curvature.

In GR, only Ψ4 is nonzero →
polarisations + and ×
In NMC with c.c. other scalar, vector
and tensor modes are also possible
(Φ00,Φ11,Φ22, Λ̃ 6= 0), but full
characterisation only when the full
solution is known (needed for the Ψi ).
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Conclusions:

• In the far-�eld (no matter): NMC become pure f (R);

• Other regions: matter → so NMC plays a role - Λ, DE-like �uid;

• Extra longitudinal modes (highly non-trivial!)

ω = ω (δR, δL) (27)

which can decouple into two independent modes, under certain
conditions.

• Beyond linear level one has to implement the Newman-Penrose
formalism (decomposition of the Riemann tensor into its irreducible
parts): extra polarisation modes appear.
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The Story Untold

• In GR, both metric and "Palatini" approaches lead to the same
�eld equations, and polarisation modes. However, for alternative
theories of gravity, this is not the case.
◦ metric f(R) theories may present up to six polarisation modes.
◦ "Palatini" f(R) only exhibits two tensor modes.

• When matter is included: do matter �elds feel the connection built
from metric �eld or the independent connection (e.g. fermions)?
Three approaches: metric, Palatini and metric-a�ne.

• Take home message: matter matters!
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Thank you for your attention!

Rob Gonçalves
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