11th Iberian Gravitational Waves Meeting

9 - 11 - June - 2021

THE MASSIVE BINARY BLACK HOLE POPULATION ACROSS COSMIC TIME SEEN UNDER A SEMI-ANALYTICAL PERSPECTIVE

David Izquierdo-Villalba (Università degli studi di Milano-Bicocca)

Alberto Sesana (Università degli studi di Milano-Bicocca) Monica Colpi (Università degli studi di Milano-Bicocca) Silvia Bonoli (DIPC) * Introduction : Massive black holes and massive binary black holes

* The model used to study the massive (binary) black holes in a cosmological context

* Results

* Conclusions

- * Our relationship with massive black holes started in 1963 when Schmidt M. found the first quasar
- * More and more people studied the population of quasars: Luminosity functions, scaling relations ...

* We reached the <u>CONCLUSION</u> that

MASSIVE BLACK HOLES (>106 M_{sun}) ARE UBIQUITOUS IN ALL GALAXIES

* MASSIVE BLACK HOLES (>10⁶ M_{sun}) ARE UBIQUITOUS IN ALL GALAXIES

HIERARCHICAL GROWTH OF THE STRUCTURES:

Mergers are one of the main drivers of galaxy evolution

GALAXIES MIGHT HOST MORE THAN ONE MASSIVE BLACK HOLE

BLACK HOLES ARE DEPOSITED FAR AWAY (> kpc)

IS POSSIBLE BRING THE TWO BLACK HOLES TOGETHER (~pc) ?

Many works have tackled this problem...

BHs

coalescence

10⁻⁶ pc 10⁻⁷ pc

INTRODUCTION

1 pc

10⁻² pc

Dynamical friction or pairing phase

1 kpc

100 pc

100 kpc

Dynamical friction or pairing phase

Hardening phase

Dynamical friction or pairing phase

Hardening phase

GW phase

CONCLUSIONS

INTRODUCTION

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

THE MODEL

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

 10^{-1} 10^{-1}

43 44 45

 $\substack{47 \ 48 \ 49 \ 43 \ 44 \ 45 \ 46 \\ \log_{10}(\mathrm{L_{bol}/erg \ s^{-1}})}$

47 48 49

46

CONCLUSIONS

THE MODEL

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

THE MODEL

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

MODEL FOR THE BINARY POPULATION

THE MODEL

RELIABLE GALAXY POPULATION

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE BLACK HOLE POPULATION

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

CONCLUSIONS

THE MODEL

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION | RE

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase

- Hardening/GW phase: We have assumed a Sércic model profile $\rho_{\rm B}(r) = \rho_0 \left(\frac{r}{{
m R_e}}\right)^{-{
m p}} e^{-{
m b}\left(\frac{r}{{
m R_e}}\right)^{1/{
m n}}}$

Biava et al. 2019

1) Gas rich mergers : Disk torques driven the binary merge

 $\frac{da_{\rm BH}}{dt} = -\frac{2\dot{\rm M}}{\mu} \sqrt{\frac{\delta}{1-e^2}} a_{BH}$ Bonetti et al. 2018

2) Gas poor mergers : The stellar background drives the binary merge Sesana & Khan 2015

$$\frac{da_{\rm BH}}{dt} = \left(\frac{da_{\rm BH}}{dt}\right)_{\rm Hard} + \left(\frac{da_{\rm BH}}{dt}\right)_{\rm GW} = -\frac{GH\rho_{\rm inf}}{\sigma_{\rm inf}}a_{\rm BH}^2 - \frac{64G^3(M_{\rm BH_1} + M_{\rm BH_2})^3F(e)}{5c^5(1+q)^2a_{\rm BH}^3}$$
$$\frac{de}{dt} = a_{\rm BH}\frac{G\rho_{\rm inf}HK}{\sigma_{\rm inf}} - \frac{304}{15}\frac{G^3q(M_{\rm BH_1} + M_{\rm BH_2})^3}{c^5(1+q)^2a_{\rm BH}^4(1-e^2)^{5/2}}\left(e + \frac{121}{304}e^3\right)$$

a) The initial eccentricity is assumed to be random between [0,1]

b) The initial separation is computed as $M_{\rm Bulge}(< a_0) = 2 M_{\rm BH,2}$

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase

- Hardening/GW phase

- Merger caused by intruder massive black hole (Bonetti et al. 2018)

MERGER RATE

RESULTS

AMPLITUDE OF THE GRAVITATIONAL WAVE BACKGROUND IN THE PTA BAND

CONCLUSIONS

* We have tackled the formation and evolution of massive black hole binaries (>10⁶ M_{sun}) in the PTA band

- Dark matter merger trees from N-body simulations
- Semi-analytical model
- Proper treatment of the growth and spin evolution
- * For galaxies $M_{stellar} > 10^9 M_{sun}$ only black holes >10⁶ M_{sun} can reach the nucleus of its central galaxy
 - After baryonic merger with merger ratios > 0.1
 - Seems to have a correlation between the wandering time and the galaxy morphology
- * The merger rate of binary black holes of $>10^6 M_{sun}$ is quite low < 0.01 event per year

* The amplitude of the gravitational wave background at nHz is consistent with the expectations AND most of the signal comes form binary black holes merging in elliptical galaxies

* The amplitude of the gravitational wave background at nHz is produced by:

- Very massive binaries: $M_{chirp} > 10^8 M_{sun}$
- Binary merger ratios q > 0.1

THANKS