New twists in compact binary waveform modelling: a fast time domain model for precession

Héctor Estellés, Marta Colleoni, Cecilio García-Quirós, Sascha Husa, David Keitel, Maite Mateu, Maria de Lluc Planas, Antoni Ramos-Buades

11th Iberian Gravitational Wave Meeting

Image credit: Rafel Jaume

Institute of Applied Computing & Community Code.

AGENCIA Estatal de Investigación

Compact Binary GW Signals

Compact binary coalescing signals:

- High dimensional parameter space: individual masses, spins, orientation parameters, sky location, matter parameters, eccentricity
- Knowledge about signals from different approaches during different stages of the evolution:
 - Early inspiral: Post-Newtonian theory, Self-force
 - Numerical relativity: late inspiral, plunge, merger and ringdown
 - **Ringdown: BH perturbation theory**

Image credit: Luc Blanchet, doi.org/10.1016/j.crhy.2019.02.004

Waveform models are crucial for extracting the best info from the detectors data:

- Parameter estimation of source properties
- Tests of general relativity
- Searches/event rates, ...

Accurate, general and efficient waveform models needed for the challenges of next observing runs and future observatories (LISA, ET)

Phenomenological waveform modelling program

Phenom(enological) waveform modelling: accurate and fast representations of GW signals.

Relativity) in terms of fast closed-form expressions for the waveforms.

In Fourier domain (best suited for most data a applications).

Continuous development towards modelling CBC signals:

- Non-spinning (PhenomA/B)
- Spin aligned (dominant mode): PhenomC/D/X
- Precessing: PhenomP/Pv2/Pv3/XP
- Higher harmonics: PhenomHM/XHM/Pv3HM/
- Eccentricity: PhenomXE
- Matter: PhenomNRTidal/NSBH

Extreme compression of available information (PN theory, BH perturbation theory, Numerical

nalveie	Motivation for a time domain Phenom family:					
generic	 Dispense with the Stationary Pha Approximation (SPA) for modelling to precession transfer functions. 					
	 Closer relation to system dynamics (aims to h in the modelling of generic systems). 					
	 Easier to approximate precessing ringdown. 					
XPHM	 Cleaner inspiral-merger-ringdown separation testing GR. 					
	 While maintaining Phenom philosophy: 					
	 Efficient and accurate representation of 					

waveforms.

Phenom modelling in the time domain: non-precessing

GW polarisations decomposed in (spin-weighted) spherical harmonic basis:

$$h_{+}(t) - ih_{\times}(t) = \sum_{l} \sum_{-l \le m \le l} h_{lm}(t) \, 2Y_{lm}(t, \phi)$$

Model separately each mode $(2,\pm 2)$, $(2,\pm 1)$, $(3,\pm 3)$, $(4,\pm 4)$, $(5,\pm 5)$:

Piecewise C^1 expressions for amplitude and phase (derivative) of each mode.

$$H_{lm} = |h_{lm}|, \ \phi_{lm} = \arg(h_{lm}), \ \omega_{lm} = \dot{\phi}_{lm}$$

- Inspiral: PN analytical expressions (3.5PN spinning TaylorT3 for orbital frequency, 3PN amplitudes from Blanchet+, 2PN corrections from Buonanno+, 1.5PN corrections from Arun+ + 3.5PN for (2,2) amplitude from Faye+)
- Intermediate/plunge: phenomenological expressions based on hyperbolic functions.
- Ringdown: adaptation of analytical expressions based on QNM decomposition Damour+ from
- Calibrated with 531 BBH non-precessing NR simulations from SXS Collaboration Catalog (2019) Boyle+, 15 BAM simulations and 61 numerical waveforms from TeukCode.

IMRPhenomT/P: Estellés et al 2020 **IMRPhenomTHM:** Estellés et al 2020 **IMRPhenomTPHM:** Estellés et al 2021

Phenom modelling in the time domain: precessing

Precessing extension based on "twisting-up" technique:

$$h_{+}(t) - ih_{\times}(t) = \sum_{l} \sum_{-l \le m \le l} h_{lm}^{I}(t) \, {}^{2}Y_{lm}(t, \phi)$$

Inertial frames modes obtained from rotation of non-inertial (co-precessing) modes with simpler morphology:

 $h_{lm}^{I}(t) = \mathscr{D}_{mm'}^{l}[\alpha(t), \beta(t), \gamma(t)]h_{lm'}^{\text{coprec}}(t)$

Euler angles encode precessing motion of the orbital plane: $\alpha = \arctan(\hat{\ell}_y, \hat{\ell}_x)$ $\dot{\gamma} = -\dot{\alpha}\cos{\beta}$ $\cos\beta = \hat{J} \cdot \hat{\ell} = \hat{\ell}_{\tau}$

Co-precessing modes approximated from non-precessing model (with modified precessing final state):

 $h_{lm}^{\text{coprec}}(t; m_1/m_2, \chi_1, \chi_2) \approx h_{lm}^{\text{nonprec}}(t; m_1/m_2, \chi_{1l}, \chi_{2l})$

Credit: Maria de Lluc Planas

 $\boldsymbol{\ell}$: Unit vector perpendicular to the orbital plane (Newtonian orbital angular momentum).

J: Total angular momentum of the system.

Euler angles: analytical approaches

Main analytical approaches to precessing Euler angles:

- Next-to-next-to-leading order (NNLO) (Bohe+) effective single spin.
- Multiscale analysis (MSA) (Chatziioannou+) doble spin.

Aimed for more direct comparisons with other Phenom models.

Evaluated with non-precessing analytical orbital frequency: $v(t) = \Omega_{orb}^{1/3}, \ \Omega_{orb} = \frac{1}{2}\omega_{22}^{T}$

Improvements over previous implementations:

Numerical evaluation of minimal rotation condition (recovering of nonprecessing limit in MSA).

Smooth plunge behaviour with linear continuation.

Euler angles: numerical evolution

Numerical evolution approach:

Solve evolution equations for $\hat{\mathscr{C}}$ (implies evolving individual spin vectors):

 $\begin{aligned} \frac{d\hat{\ell}}{dt} &= \mathbf{\Omega}(v(t), q, S_1, S_2) \times \hat{\ell} \\ \frac{dS_{1,2}}{dt} &= \mathbf{\Omega}(v(t), q, S_1, S_2) \times S_{1,2} \end{aligned}$

Orbit averaged N^4LO PN expressions included.

- Tracking all degrees of freedom: improvement over previous analytical expressions.
- Efficient evaluation in terms of analytical non-precessing orbital frequency: fast implementation.
- Simple analytical approximation attached at ringdown:

 $\alpha^{RD}(t) \simeq (\omega_{122}^{RD} - \omega_{121}^{RD})t + \alpha_0^{RD}$

 $\dot{\mathscr{C}} = -\dot{S}_1 - \dot{S}_2$

Comparison with other state-of-the-art waveform models

Unfaithfulness comparison with other stateof-the-art precessing multimode models: IMRPhenomXPHM, SEOBNRv4PHM and NRSur7dq4.

Great agreement with TD models (median ~ 0.2%): more consistent treatment of merger-RD.

Better agreement of numerical approach with SEOB: more accurate inspiral than analytical approaches.

Disagreement for large mass asymmetry and high spins norm: possibly caveat of non-precessing orbital frequency.

Comparison with Numerical Relativity

Unfaithfulness comparison with Numerical Relativity precessing simulations:

- Bulk of cases below 1% mismatch.
- outlier (SXS:0165) with challenging parameters. Need to include further physics (mode asymmetry).

Parameter estimation of NR injected signals:

- Correct recovery at $M_T = 100 M_{\odot}$.
- Individual masses in 90% contour levels for higher masses.
- Need of more detailed systematic studies towards identifying recovery bias.

Parameter estimation: GW190412 re-analysis

GW190412: first reported GW event with confident mass asymmetry: interesting to compare different multimode models.

Non-precessing IMRPhenomTHM employed in published re-analysis (Colleoni+): great consistency with other NR-calibrated models.

Precessing re-analysis:

- Recovered medians and CI consistent with previous results.
- Slightly better agreement with SEOB results (in terms of medians and CIs).
 (SEOB results obtained with RIFT PE code)
- Higher SNR, likelihood and BF that for Fourier domain models.

parameter	SEOBNRv4PHM	IMRPhenomPv3HM	LVC Combined	IMRPhenomXPHM	IMRPhenomTPHM
$m_1^{ m s}/M_{\odot}$	$31.7^{+3.6}_{-3.5}$	$28.1^{+4.8}_{-4.3}$	$29.7^{+5.0}_{-5.3}$	$30.0^{+5.2}_{-4.3}$	$30.9^{+3.5}_{-3.2}$
$m_2^{ m s}/M_{\odot}$	$8.0\substack{+0.9 \\ -0.7}$	$8.8^{+1.5}_{-1.1}$	$8.4^{+1.8}_{-1.0}$	$8.4^{+1.3}_{-1.1}$	$8.2\substack{+0.8\\-0.7}$
$M^{ m s}/M_{\odot}$	$39.7^{+3.0}_{-2.7}$	$36.9^{+3.7}_{-2.9}$	$38.1^{+4.0}_{-3.7}$	$38.4^{+4.2}_{-3.2}$	$39.1^{+2.8}_{-2.5}$
${\cal M}^{ m s}/M_{\odot}$	$13.3\substack{+0.3 \\ -0.3}$	$13.2\substack{+0.5 \\ -0.3}$	$13.3\substack{+0.4 \\ -0.3}$	$13.3\substack{+0.5 \\ -0.4}$	$13.3\substack{+0.3 \\ -0.3}$
q	$0.25\substack{+0.06\\-0.04}$	$0.31\substack{+0.12 \\ -0.07}$	$0.28\substack{+0.13 \\ -0.06}$	$0.28\substack{+0.09 \\ -0.07}$	$0.27\substack{+0.06 \\ -0.05}$
$\chi_{ ext{eff}}$	$0.28\substack{+0.06\\-0.08}$	$0.22\substack{+0.08\\-0.11}$	$0.25\substack{+0.08 \\ -0.11}$	$0.25\substack{+0.1 \\ -0.1}$	$0.27\substack{+0.07 \\ -0.07}$
$\chi_{ m p}$	$0.31\substack{+0.14 \\ -0.15}$	$0.31\substack{+0.24 \\ -0.17}$	$0.30\substack{+0.19 \\ -0.15}$	$0.23\substack{+0.20 \\ -0.13}$	$0.28\substack{+0.15 \\ -0.13}$

More on parameter estimation

Re-analysis of GWTC-1 with a new generation of phenomenological waveform models (Maite Mateu-Lucena, presented today at 12:40):

- Re-analysis with nonprecessing model IMRPhenomTHM for all events and precessing IMRPhenomTPHM for some of them.
- Consistent results with IMRPhenomXPHM, better inference for GW170729.

A detailed analysis of GW190521 with phenomenological waveform models (Marta Colleoni, Friday at 15:10):

Discussion of recovery of high mass ratio support, higher mode content effects, probability of PISN mass gap, association with AGN flare ZTF19abanrhr ...

Conclusions & future work

New precessing multimode model in the time domain for BBH signals:

- Phenom philosophy: fast and accurate representation of the waveforms.
- Improved inspiral Euler angle description: numerical evolution of spin evolution equations.
- Simple analytical approximation for the ringdown.
- Fast implementation.
- Candidate model for BBH coalescing signals.
- Reviewed by the LVC, publicly available with LALSuite.

Caveats and future improvements:

Improve efficiency:

- Inefficient evaluation time for low m signals.
- Bottleneck in ringdown evaluation for highly redshifted massive systems.

Improve physics:

- Consistent evolution of orbital frequency in terms of the evolving spin magnitudes.
- Include mode asymmetry effects.
- Better understanding of precessing ringdown.

