Anisotropic inflationary loop quantum cosmology: primordial gravitational waves and predictions for the CMB

Javier Olmedo

Universidad de Granada

In collaboration with I. Agulló and V. Sreenath

Phys. Rev. Lett. 124, 251301

11 Iberian GW Meeting (9/06/21)
Overview

♦ Most of the models of the early universe are homogeneous and isotropic. Planck observations (2018) did not confirm with strong evidence any departure.

♦ However there is consensus that some anomalies at large scales (dipolar, quadrupolar, etc.) are present, indicating new (pre-)inflationary physics (L. Shamir (2020) reported that a distribution of galaxy spin directions show a quadrupolar-like alignment at more than 5σ).

♦ We will focus on the influence of anisotropies in the pre-inflationary universe (with special attention to tensor modes).

♦ Cosmological perturbation theory on inflationary Bianchi I spacetimes has been studied in great detail (Pereira, Pitrou, Uzan, 2007-2008).

♦ They discuss that anisotropies “break” scale invariance, isotropy (inducing high-order multipoles) and introduce scalar-tensor and tensor-tensor cross-correlations.
Overview

♦ But in classical GR, anisotropies can be large at the onset of inflation (and before). There is no well-posed initial value problem for perturbations.

♦ However, in bouncing inflationary cosmologies, this issue is alleviated (anisotropies are arbitrarily small in the far past).

♦ We complete a Fock quantization for perturbations (with anisotropies treated non perturbatively), and compute their power spectra at the end of inflation.

♦ We find upper bounds on the anisotropies (shear) via constraints on the quadrupolar anomaly reported by Planck Collaboration and discuss new observational effects (generation of TB and EB correlation functions).
Bianchi I spacetimes in LQC

♦ We consider LQC anisotropic bouncing models. Here, in the far past and future spacetime becomes isotropic.

♦ The effective dynamics is determined by (Ashtekar, Wilson-Ewing, Mena-Marugán, Martín-Benito, ...)

\[G_{\mu\nu} = 8\pi G (T_{\mu\nu} + T_{\mu\nu}^{LQC}) , \]

(1)

♦ The energy density, mean Hubble parameter and shear are bounded above (Gupt, Singh, 2012-2013)

\[\rho_{\text{max}} = 0.41 \rho_{\text{Pl}}, \quad H_{\text{max}} = \frac{8.34}{\ell_{\text{Pl}}}, \quad \sigma^2_{\text{max}} = \frac{11.57}{\ell_{\text{Pl}}^2}. \]

♦ The background is determined by initial conditions when the mean scale factor \(a(t) \) bounces at \(t = t_B \) (i.e. \(H(t_B) = 0 \)). There we fix \(\sigma^2(t_B), \Psi(t_B), \phi(t_B) \) and the choice for the scale factors \(a(t_B) = 1 \) and \(a_1(t_{\text{end}}) = a_2(t_{\text{end}}) = a_3(t_{\text{end}}) \).
Bianchi I spacetimes in LQC

We are interested in cosmologies with isotropic regimes connected by means of anisotropic ones: bouncing cosmologies.

We have focused in LQC bouncing models. The effective dynamics is determined by

\[G_{LQC}^{\mu \nu} = 8\pi G T^{\mu \nu}, \]

The energy density, mean Hubble parameter and shear are bounded above (Gupt, Singh, 2012-2013)

\[\rho_{max} = 0.41 \rho_{Pl}, \]
\[H_{max} = 8.34 \ell_{Pl}, \]
\[\sigma^2_{max} = 11.57 \ell_{Pl}^2. \]

The background is determined by initial condition at the bounce \((H(t_B) = 0) \). There we fix \(\sigma^2(t_B) \), \(\Psi(t_B) \), \(\phi(t_B) \) and the choice for the scale factors \(a(t_B) = 1 \) and \(a_1(t_{end}) = a_2(t_{end}) = a_3(t_{end}) \).

\[\log \begin{array}{c}
-10^4 & -10^3 & -10^2 & -10^1 & 0 & 10^1 & 10^2 & 10^3 & 10^4 & 10^5 & 10^6 & 10^7 \\
-10^{-23} & -10^{-21} & -10^{-19} & -10^{-17} & -10^{-15} & -10^{-13} & -10^{-11} & -10^{-9} & -10^{-7} & -10^{-5} & -10^{-3} & -10^{-1} & 10^{-1} \end{array} \]

\[\frac{\dot{\phi}^2}{2}, V(\phi), \frac{\sigma^2}{2\kappa} \]

\[(\text{log scale}) \quad (\text{linear scale}) \quad (\text{log scale}) \]
Bianchi I: gauge invariant perturbations

- The EOMs of each mode is now given by

$$\ddot{\Gamma}_\mu + 3H \dot{\Gamma}_\mu + \frac{k^2}{a^2} \Gamma_\mu + \frac{1}{a^2} \sum_{\mu' = 0}^{2} U_{\mu \mu'}(\hat{k}) \Gamma_{\mu'} = 0, \quad (2)$$

with $k^2/a^2 = (k_1^2/a_1^2 + k_2^2/a_2^2 + k_3^2/a_3^2)$. Besides, Γ_0 refers to the scalar mode, Γ_1 and Γ_2 to the two tensor (transverse and traceless) polarizations (+ and ×).

- It is more convenient to express the Fourier modes of tensor perturbations in the helicity basis (circular polarization)

$$\Gamma_{\pm 2}(\vec{k}) = \frac{1}{\sqrt{2}} \left(\Gamma_1(\vec{k}) \mp i \Gamma_2(\vec{k}) \right). \quad (3)$$

- Then, we express $\Gamma_s(\vec{k})$ as a linear combination of the elements of the (orthonormal) basis of complex solutions normalized to

$$\sum_{s = 0, \pm 2} v_s(\lambda)(\vec{k})\bar{v}_s(\lambda')(\vec{k}) - \bar{v}_s(\lambda)(\vec{k})v_s(\lambda')(\vec{k}) = -i \frac{4\kappa}{a^3 V_0} \delta^{\lambda\lambda'}. \quad (4)$$
Bianchi I: gauge invariant perturbations

♦ Quantum fields are given by
\[
\hat{\Gamma}_s(\vec{k}) = \sum_{\mu=0}^{2} v^{(\mu)}_s(\vec{k}) \hat{a}_\mu(\vec{k}) + \bar{v}^{(\mu)}_s(-\vec{k}) \hat{a}^\dagger_\mu(-\vec{k}),
\]

\[
[\hat{a}_\mu(\vec{k}), \hat{a}^\dagger_{\mu'}(\vec{k}')] = \delta_{\mu\mu'} \delta_{\vec{k},\vec{k}'}, \quad \hat{a}_\mu(\vec{k}) |0\rangle = 0. \tag{5}
\]

♦ For perturbations, we consider the 0th order adiabatic (also known as massless Minkowski) vacuum state for perturbations at 10^3 Planck secs. before the bounce

\[
v^{(1)}(\vec{k}) = \sqrt{\frac{4\kappa}{a^2 V_0}} \frac{1}{\sqrt{2k}} (1, 0, 0), \quad \dot{v}^{(1)}(\vec{k}) = \sqrt{\frac{4\kappa}{V_0 a^2}} \frac{1}{\sqrt{2k}} \frac{-ik}{\sqrt{2k}} (1, 0, 0),
\]

\[
v^{(2)}(\vec{k}) = \sqrt{\frac{4\kappa}{a^2 V_0}} \frac{1}{\sqrt{2k}} (0, 1, 0), \quad \dot{v}^{(2)}(\vec{k}) = \sqrt{\frac{4\kappa}{V_0 a^2}} \frac{1}{\sqrt{2k}} \frac{-ik}{\sqrt{2k}} (0, 1, 0),
\]

\[
v^{(3)}(\vec{k}) = \sqrt{\frac{4\kappa}{a^2 V_0}} \frac{1}{\sqrt{2k}} (0, 0, 1), \quad \dot{v}^{(3)}(\vec{k}) = \sqrt{\frac{4\kappa}{V_0 a^2}} \frac{1}{\sqrt{2k}} \frac{-ik}{\sqrt{2k}} (0, 0, 1). \tag{6}
\]
Bianchi I: Fock quantization of perturbations

♦ The relevant observables are the power spectra

\[\langle 0 | \hat{\Gamma}_{ss'}(\vec{k},\vec{k}') | 0 \rangle = \mathcal{V}_0^{-1} \frac{2\pi^2}{k^3} \mathcal{P}_{ss'}(\vec{k}) \delta_{\vec{k}, -\vec{k}'}, \quad \mathcal{P}_{ss'}(\vec{k}) = \mathcal{V}_0 \frac{k^3}{2\pi^2} \sum_{\mu} \left[v_s^{(\mu)}(\vec{k}) \bar{v}_{s'}^{(\mu)}(\vec{k}) \right] \]

♦ Power spectra satisfy: \(\mathcal{P}_{ss'}(\vec{k}) \) are real and positive if \(s = s' \), otherwise they are complex; \(\bar{\mathcal{P}}_{ss'}(\vec{k}) = \mathcal{P}_{ss'}(-\vec{k}) \) (reality conditions); \(\mathcal{P}_{ss'}(\vec{k}) = \mathcal{P}_{s's}(-\vec{k}) \) (commutation relations). A parity-invariant vacuum state implies \(\mathcal{P}_{ss'}(\vec{k}) = \mathcal{P}_{-s-s'}(-\vec{k}) \) (\(h_{ij} \) is parity invariant)

♦ We compute the power spectra \(\mathcal{P}_{ss'}(\vec{k}) \) at the end of inflation. For convenience

\[\mathcal{P}_{ss'}(\vec{k}) = \sum_{L=|s-s'|}^{\infty} \sum_{M=-L}^{L} \mathcal{P}^{LM}_{ss'}(k) s-s' Y_{LM}(\hat{k}). \quad (7) \]

with \(s Y_{LM}(\hat{k}) \) the usual spin-weighted spherical harmonics. They are zero when \(L < |s| \) (Therefore, \(\mathcal{P}^{LM}_{ss'}(k) = 0 \) for \(L < |s-s'| \), i.e. only \(\mathcal{P}_{00} \) and \(\mathcal{P}_{22} = \mathcal{P}_{-2-2} \) will contribute when \(L = 0 \)).
Scalar power spectrum

\[\mathcal{P}_R^{00}(k) \]

\[A_s(k/k_*)^{n_s-1} \]

Observable region
Scalar power spectrum

\[
\frac{P_{00}(k)}{R(k)} \quad \frac{P_{20}(k)}{R(k)} \quad \Re\left[\frac{P_{21}(k)}{R(k)}\right] \quad \Re\left[\frac{P_{22}(k)}{R(k)}\right]
\]
Quadrupole of $P_{00}(\vec{k})$: constraints on the shear

- Planck collaboration provides constraints on g_2 associated to the quadrupolar moments $\mathcal{P}_R^{2M}(k)$, where $\mathcal{P}_R(\vec{k}) \propto \mathcal{P}_{00}(\vec{k})$.

- We can constraint the background parameter space, namely $\sigma^2(t_B)$, $\Psi(t_B)$, and $\phi(t_B)$.

- We find that the minimum allowed value of $\phi(t_B)$ (number of e-folds) grows with $\sigma^2(t_B)$ (amount of anisotropies), but it does not strongly depends on $\Psi(t_B)$ (distribution of anisotropies).

\[
\sigma^2(t_B) = 5.45, \quad \Psi(t_B) = 0.0, \quad \phi(t_B) = 1.1.
\]
Tensor power spectrum

\[\frac{k}{k^*} \]

\[10^{-3} \quad 10^{-2} \quad 10^{-1} \]

\[10^{-9} \quad 10^{-10} \quad 10^{-11} \]

\[10^{-8} \]

\[\mathcal{P}_{00}^{22}(k) \]
\[\mathcal{P}_{20}^{22}(k) \]
\[\mathcal{R}[\mathcal{P}_{21}^{22}(k)] \]
\[\mathcal{R}[\mathcal{P}_{22}^{22}(k)] \]
Tensor-tensor cross-correlations

Observable region

$\mathbb{R}[P^4_{-22}(k)]$ $\mathbb{R}[P^6_{-22}(k)]$
$\mathbb{I}[P^5_{-22}(k)]$ $\mathbb{I}[P^7_{-22}(k)]$

k/k^*

10^{-3} 10^{-2} 10^{-1}
Scalar-tensor cross-correlations

$\frac{k}{k^*}$

Observable region

$\mathcal{P}^{20}_R(k)$
$\mathcal{P}^{30}_R(k)$
$\mathcal{P}^{40}_R(k)$
$\mathcal{P}^{50}_R(k)$
BB angular correlation functions

In the case of the correlation functions TT, EE, BB and TE one has $C_{\ell \ell', mm'}^{XX'} = 0$ if $\ell + \ell'$ is odd.
TB-EB angular correlation functions

In the case of the TB and EB correlation functions $C^{BY'}_{\ell\ell',mm'} = 0$ if $\ell + \ell'$ is even.
Summary

♦ We study quantum gauge-invariant cosmological perturbations for anisotropic inflationary spacetimes.

♦ We compute the power spectra within a concrete bouncing inflationary scenario. Here, tensor perturbations show a stronger coupling to anisotropies (enhanced particle production at large scales).

♦ We find upper bounds on anisotropies thanks to the constraints on the quadrupolar anomaly given by Planck Collaboration.

♦ Given the constraints above, we see that BB correlation function shows higher power at low multipoles than the isotropic standard scenario (as a consequence of the enhancement of power of tensor modes at large scales).

♦ Moreover, anisotropies generate angular (TB and EB) correlation functions, which would identically vanish in the isotropic limit.