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Overview
� Most of the models of the early universe are homogeneous and isotro-

pic. Planck observations (2018) did not confirm with strong evidence
any departure.

� However there is consensus that some anomalies at large scales (di-
polar, quadrupolar, etc.) are present, indicating new (pre-)inflationary
physics (L. Shamir (2020) reported that a distribution of galaxy spin directions show a

quadrupolar-like alignment at more than 5σ).

� We will focus on the influence of anisotropies in the pre-inflationary
universe (with special attention to tensor modes).

� Cosmological perturbation theory on inflationary Bianchi I spaceti-
mes has been studied in great detail (Pereira, Pitrou, Uzan, 2007-2008).

� They discuss that anisotropies “break” scale invariance, isotropy (in-
ducing high-order multipoles) and introduce scalar-tensor and tensor-
tensor cross-correlations.

1/10



Overview

� But in classical GR, anisotropies can be large at the onset of infla-
tion (and before). There is no well-posed initial value problem for
perturbations.

� However, in bouncing inflationary cosmologies, this issue is allevia-
ted (anisotropies are arbitrarily small in the far past).

� We complete a Fock quantization for perturbations (with anisotropies
treated non perturbatively), and compute their power spectra at the
end of inflation.

� We find upper bounds on the anisotropies (shear) via constraints on
the quadrupolar anomaly reported by Planck Collaboration and dis-
cuss new observational effects (generation of TB and EB correlation
functions).
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Bianchi I spacetimes in LQC
� We consider LQC anisotropic bouncing models. Here, in the far past

and future spacetime becomes isotropic.

� The effective dynamics is determined by (Ashtekar, Wilson-Ewing, Mena-Marugán, Martín-

Benito, ...)

Gµν = 8πG (Tµν + TLQC
µν ), (1)

� The energy density, mean Hubble parameter and shear are bounded
above (Gupt, Singh, 2012-2013)

ρmax = 0.41ρPl, Hmax =
8.34
`Pl

, σ2
max =

11.57
`2

Pl
.

� The background is determined by initial conditions when the mean
scale factor a(t) bounces at t = tB (i.e. H(tB) = 0). There we fix
σ2(tB), Ψ(tB), φ(tB) and the choice for the scale factors a(tB) = 1
and a1(tend) = a2(tend) = a3(tend).
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Bianchi I spacetimes in LQC

� We are interested in cosmologies with with isotropic regimes con-
nected by means of anisotropic ones: bouncing cosmologies.

� We have focused in LQC bouncing models. The effective dynamics
is determined by (Ashtekar, Wilson-Ewing, Mena-Marugán, Martín-Benito, ...)

GLQC
µν = 8πG Tµν ,

� The energy density, mean Hubble parameter and shear are bounded
above (Gupt, Singh, 2012-2013)

ρmax = 0.41ρPl, Hmax =
8.34
`Pl

, σ2
max =

11.57
`2

Pl
.

� The background is determined by initial condition at the bounce
(H(tB) = 0). There we fix σ2(tB), Ψ(tB), φ(tB) and the choice for
the scale factors a(tB) = 1 and a1(tend) = a2(tend) = a3(tend).
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Bianchi I: gauge invariant perturbations
� The EOMs of each mode is now given by

Γ̈µ + 3 H Γ̇µ +
k2

a2
Γµ +

1
a2

2∑
µ′=0

Uµµ′ (k̂)Γµ′ = 0 , (2)

with k2/a2 = (k2
1/a2

1 +k2
2/a2

2 +k2
3/a2

3). Besides, Γ0 refers to the scalar mode,
Γ1 and Γ2 to the two tensor (transverse and traceless) polarizations
(+ and ×).

� It is more convenient to express the Fourier modes of tensor pertuba-
tions in the helicity basis (circular polarization)

Γ±2(~k) =
1
√

2

(
Γ1(~k)∓ iΓ2(~k)

)
. (3)

� Then, we express Γs(~k) as a linear combination of the elements of
the (orthonormal) basis of complex solutions normalized to

∑
s=0,±2

v(λ)s (~k)v̇(λ′)
s (~k)− v̇(λ)s (~k)v(λ′)

s (~k) = −i
4κ

a3V0
δλλ

′
. (4)
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Bianchi I: gauge invariant perturbations

� Quantum fields are given by Γ̂s(~k) =
2∑

µ=0

v(µ)s (~k)âµ(~k) + v̄(µ)s (−~k)â†µ(−~k),

[âµ(~k), â†
µ′ (~k

′)] = δµµ′ δ~k,~k′ , âµ(~k)|0〉 = 0. (5)

� For perturbations, we consider the 0th order adiabatic (also known as
massless Minkowski) vacuum state for perturbations at 103 Planck
secs. before the bounce

v(1)(~k) =

√
4κ

a2V0

1
√

2k
(1, 0, 0), v̇(1)(~k) =

√
4κ
V0

1
a2

−ik
√

2k
(1, 0, 0),

v(2)(~k) =

√
4κ

a2V0

1
√

2k
(0, 1, 0), v̇(2)(~k) =

√
4κ
V0

1
a2

−ik
√

2k
(0, 1, 0),

v(3)(~k) =

√
4κ

a2V0

1
√

2k
(0, 0, 1), v̇(3)(~k) =

√
4κ
V0

1
a2

−ik
√

2k
(0, 0, 1). (6)
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Bianchi I: Fock quantization of perturbations
� The relevant observables are the power spectra

〈0|Γ̂(s(~k)Γ̂s′)(~k
′)|0〉 = V−1

0
2π2

k3
Pss′ (~k) δ~k,−~k , Pss′ (~k) = V0

k3

2π2

∑
µ

[
v(µ)s (~k) v̄(µ)s′ (~k)

]

� Power spectra satisfy:Pss′(~k) are real and positive if s = s′, otherwise
they are complex; P̄ss′(~k) = Pss′(−~k) (reality conditions); Pss′(~k) =
Ps′s(−~k) (commutation relations). A parity-invariant vacuum state
implies Pss′(~k) = P−s−s′(−~k) (̊hij is parity invariant)

� We compute the power spectra Pss′(~k) at the end of inflation. For
convenience

Pss′ (~k) =
∞∑

L=|s−s′|

L∑
M=−L

PLM
ss′ (k) s−s′YLM(k̂). (7)

with sYLM(k̂) the usual spin-weighted spherical harmonics. They are
zero when L < |s| (Therefore, PLM

ss′ (k) = 0 for L < |s − s′|, i.e. only P00 and

P22 = P−2−2 will contribute when L = 0).
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Scalar power spectrum
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Scalar power spectrum
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Quadrupole of P00(~k): constraints on the shear
� Planck collaboration provides constraints on g2 associated to the qua-

drupolar moments P2M
R (k), where PR(~k) ∝ P00(~k).

� We can constraint the background parameter space, namely σ2(tB),
Ψ(tB), and φ(tB).

� We find that the minimum allowed value of φ(tB) (number of e-folds)

grows with σ2(tB) (amount of anisotropies), but it does not strongly de-
pends on Ψ(tB) (distribution of anisotropies).
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Tensor power spectrum
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Tensor-tensor cross-correlations
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Scalar-tensor cross-correlations
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BB angular correlation functions

In the case of the correlation functions TT , EE, BB and TE one has
CXX′
``′,mm′ = 0 if `+ `′ is odd.
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TB-EB angular correlation functions

In the case of the TB and EB correlation functions CBY′
``′,mm′ = 0 if `+ `′ is

even.
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Summary
� We study quantum gauge-invariant cosmological perturbations for

anisotropic inflationary spacetimes.

� We compute the power spectra within a concrete bouncing inflatio-
nary scenario. Here, tensor perturbations show a stronger coupling to
anisotropies (enhanced particle production at large scales).

� We find upper bounds on anisotropies thanks to the constraints on the
quadrupolar anomaly given by Planck Collaboration.

� Given the constraints above, we see that BB correlation function
shows higher power at low multipoles than the isotropic standard
scenario (as a consequence of the enhancement of power of tensor
modes at large scales).

� Moreover, anisotropies generate angular (TB and EB) correlation fun-
ctions, which would identically vanish in the isotropic limit.
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