Towards a gravitational-wave catalogue of Proca-star mergers

Juan Calderón Bustillo*

Nicolás Sanchis-Gual, Samson Leong, Koustav Chandra, Alejandro Torres-Forné, Toni Font, Avi Vajpeyi, Rory Smith, Carlos Herdeiro, Eugen Radu & Isaac Wong

XI Iberian Gravitational-Wave Meeting, June 2021

Phys.Rev.Lett 126.081101 & Phys.Rev.Lett 126.201101 (2021)

European Commission

Horizon 2020 European Union funding for Research & Innovation

*juan.calderon.bustillo@gmail.com

Safe tu assume a "vanilla" quasi-circular inspiral process

 \mathbb{W}

May 21st 2019

M

GW190521

Barely any (visible) pre-merger emission

- Remnant: intermediate-mass black hole.
- If BBH: primary black hole in the pair instability supernova gap.

LVC 2020

Barely any (visible) pre-merger emission

- Remnant: intermediate-mass black hole.
- If BBH: primary black hole in the pair instability supernova gap.

LVC 2020

Mm----

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.

LVC 2020 Waveform Model NRSur7dq4 (Varma+ '19)

M~~~~

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.
 - Mild precession signature

M~~~~

Barely any pre-merger emission

~~~~

- Remnant: intermediate-mass black hole.
- If BBH: primary black hole in the pair instability supernova gap.
- Mild precession signature

Extremely detailed study: Estellés et. al. 2021



 $P(\text{precession}|\text{qBBH}) \ 10:1$ 



Mm

- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
  - Mild precession signature lacksquare

Extremely detailed study: Estellés et. al. 2021



 $P(\text{precession}|\text{qBBH}) \ 10:1$ 



Mm-

- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
  - Mild precession signature

Extremely detailed study: Estellés et. al. 2021

But: Precession can mimic eccentricity! (JCB + 2021)  $\bullet$ 



JCB+ 2021



- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
  - Mild precession signature

Extremely detailed study: Estellés et. al. 2021

But: Precession can mimic eccentricity! (JCB + 2021) 



JCB+ 2021



- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the ightarrowpair instability supernova gap.
- Alternative interpretations
  - Small eccentricity (Romero-Shaw+)
  - High Eccentricity (Gayahtri+)
  - Head-on merger (JCB+)
  - Boson-star merger (this talk)







Romero-Shaw+ (2020)



- Barely any pre-merger emission ightarrow
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
- Alternative interpretations
  - Small eccentricity (Romero-Shaw+)
  - High Eccentricity (Gayahtri+)
- - Head-on merger (JCB+)
  - Boson-star merger (this talk)







- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
- Alternative interpretations
  - Small eccentricity (Romero-Shaw+)
  - High Eccentricity (Gayahtri+)
  - Head-on merger (JCB+)
  - Boson-star merger (this talk)  $\bullet$









Gamba+ (Today)





 $h[\sigma_{noise}]$ 

- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
- Alternative interpretations
  - Small eccentricity (Romero-Shaw+)
  - High Eccentricity (Gayahtri+)
  - Head-on merger (JCB+)
  - Boson-star merger (this talk)  $\bullet$







 $h[\sigma_{noise}]$ 

- Barely any pre-merger emission
  - Remnant: intermediate-mass black hole.
  - If BBH: primary black hole in the pair instability supernova gap.
- Alternative interpretations
  - Small eccentricity (Romero-Shaw+)
  - High Eccentricity (Gayahtri+)
  - Head-on merger (JCB+)
  - Boson-star merger (this talk)  $\bullet$











~~~~


- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.
- Alternative interpretations
 - Small eccentricity (Romero-Shaw+)
 - High Eccentricity (Gayahtri+)
 - Head-on merger (JCB+)
 - Boson-star merger (this talk) ?

Credit: Nicolás Sanchis-Gual, Rocío García-Souto

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

> Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

How a string of strange discoveries could reveal a cosmos hidden just out of view

Self-gravitating Bose Einstein condensates of ultralight bosons

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

> Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

Self-gravitating Bose Einstein condensates of ultralight bosons

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!! ightarrow
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

> Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

> Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

BBG WHAT YOUR BRAIN DOES TO CREATE REALITY Science focus Why people think How to beat THEY CAN HEAR THE DEAD COVID-19 BY 2022 A MACHINE TO TELL A STORY

How a string of strange discoveries could reveal a cosmos hidden just out of view

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

Boson mass: μ_V

> Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

BBG WHAT YOUR BRAIN DOES TO CREATE REALITY Science focus Why people think How to beat THEY CAN HEAR THE DEAD COVID-19 BY 2022 A MACHINE TO TELL A STORY

How a string of strange discoveries could reveal a cosmos hidden just out of view

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

Boson mass: μ_V

Determines the maximum mass of the star (before collapsing to a black hole)

• Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

BBG WHAT YOUR BRAIN DOES TO CREATE REALITY Science focus Why people think How to beat THEY CAN HEAR THE DEAD COVID-19 BY 2022 A MACHINE TO TELL A STORY

How a string of strange discoveries could reveal a cosmos hidden just out of view

- Can have spins larger than 1!!! \bullet
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

Boson mass: μ_V

Determines the maximum mass of the star (before collapsing to a black hole)

Dark-Matter candiates

Boson stars, Proca stars and ultralight bosons

BBG WHAT YOUR BRAIN DOES TO CREATE REALITY Science focus Why people think How to beat THEY CAN HEAR THE DEAD COVID-19 BY 2022 A MACHINE TO TELL A STORY

How a string of strange discoveries could reveal a cosmos hidden just out of view

- : Form unstable cloud around black-holes. SR instability. System spins-down, Continous waves. Current mass constraints.
 - : Form stable cloud around black-holes. SR equilibrium, spin of the system is kept. No Continous waves.

Quasi-circular

Mergers:

Head-on

A zoo of boson stars: Proca Stars

a) (s=1)	Tensor (s=2)	
mplex	Real	Complex
		\bigotimes

Only available for non-spinning stars

Spinning Proca star

Spinning Scalar star (Unstable)

- : Form unstable cloud around black-holes. SR instability. System spins-down, Continous waves. Current mass constraints.
 - : Form stable cloud around black-holes. SR equilibrium, spin of the system is kept. No Continous waves.

Quasi-circular

Mergers:

~~~~~

Head-on



Only available for non-spinning stars

## A zoo of boson stars: Proca Stars

| a) (s=1) | Tensor (s=2) |              |
|----------|--------------|--------------|
| mplex    | Real         | Complex      |
| ×<br>×   |              | $\bigotimes$ |



# **Spinning Proca star**



**Spinning Scalar star** (Unstable)







Credit: Nicolás Sanchis-Gual

# Building a catalogue of Proca-star mergers









~~~~~

Building a catalogue of Proca-star mergers

Initial set:

- Equal-mass, equal field frequency (equal spin)
- Initial separation = 100M
- We include (2,0), (2,2), (3,2) modes

 $\sim\sim\sim\sim$

Building a catalogue of Proca-star mergers

Initial set:

Equal-mass, equal field frequency (equal spin)

Initial separation = 100M

We include (2,0), (2,2), (3,2) modes

Secondary set:

First frequency fixed, second varies


~~~~~~

Credit: Nicolás Sanchis-Gual

# Building a catalogue of Proca-star mergers





# Model Selection Fundamentals

$$p(\theta|d) = \frac{\pi(\theta)\mathcal{L}(\theta|d)}{Z(\theta|d)}$$

 $\mathcal{L}(\theta|d)$ : Likelihood (fit)  $\pi(\theta)$ : Prior Assumptions  $Z(\theta|d)$ : Evidence for the model  $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

↑: Large likelihood

 $\downarrow$ : Useless parameters (Occam's Razor)

 $\uparrow\downarrow$ : Choice of priors

$$\frac{P(\text{Model A})}{P(\text{Model B})} = \frac{Z_A}{Z_B}$$





# Model Selection Fundamentals

$$p(\theta|d) = \frac{\pi(\theta)\mathcal{L}(\theta|d)}{Z(\theta|d)}$$

 $\mathcal{L}(\theta|d)$ : Likelihood (fit)  $\pi(\theta)$ : Prior Assumptions  $Z(\theta|d)$ : Evidence for the model  $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

↑: Large likelihood

 $\downarrow$ : Useless parameters (Occam's Razor)

 $\uparrow\downarrow$ : Choice of priors

$$\frac{P(\text{Model A})}{P(\text{Model B})} = \frac{Z_A}{Z_B}$$

# Settings:

Frequency range: 11-512Hz

Code: Bilby Ashton+ 18 Romero-Shaw+ 20



Sampler: CPNest Veitch+ (Dynesty ongoing)

**Priors**:

Uniform in Total Mass and Mass Ratio Standard for the spins, source orientation, sky-location Uniform in Co-moving volume






~~~~

Is GW190521 a Proca-star merger?

 $M \sim$


~~~~

| Parameter                                | $q = 1 \mod$                            | $q \neq 1$ n                |
|------------------------------------------|-----------------------------------------|-----------------------------|
| Primary mass                             | $115^{+7}_{-8}~M_{\odot}$               | $115^{+7}_{-8}$             |
| Secondary mass                           | $115^{+7}_{-8}~M_{\odot}$               | $111^{+7}_{-15}$            |
| Total or final mass                      | $231^{+13}_{-17}~M_{\odot}$             | $228^{+17}_{-15}$           |
| Final spin                               | $0.75\substack{+0.08 \\ -0.04}$         | $0.75^+_{-0}$               |
| Inclination $\pi/2 -  \iota - \pi/2 $    | $0.83^{+0.23}_{-0.47}$ rad              | $0.58\substack{+0.4\\-0.3}$ |
| Azimuth                                  | $0.65^{+0.86}_{-0.54}$ rad              | $0.78^{+1.2}_{-1.2}$        |
| Luminosity distance                      | 571 <sup>+348</sup> <sub>-181</sub> Mpc | $700^{+292}_{-279}$         |
| Redshift                                 | $0.12\substack{+0.05 \\ -0.04}$         | $0.14^{+}_{-}$              |
| Total or final redshifted mass           | $258^{+9}_{-9}~M_{\odot}$               | $261^{+10}_{-11}$           |
| Bosonic field frequency $\omega/\mu_V$   | $0.893\substack{+0.015\\-0.015}$        | (*)0.905                    |
| Boson mass $\mu_V$ [×10 <sup>-13</sup> ] | $8.72^{+0.73}_{-0.82}$ eV               | $8.59_{-0.5}^{+0.5}$        |
| Maximal boson star mass                  | $173^{+19}_{-14}~M_{\odot}$             | $175^{+13}_{-11}$           |







~~~~

| Parameter | $q = 1 \mod$ | $q \neq 1$ n |
|--|---|-----------------------------|
| Primary mass | $115^{+7}_{-8}~M_{\odot}$ | 115^{+7}_{-8} |
| Secondary mass | $115^{+7}_{-8}~M_{\odot}$ | 111^{+7}_{-15} |
| Total or final mass | $231^{+13}_{-17}~M_{\odot}$ | 228^{+17}_{-15} |
| Final spin | $0.75\substack{+0.08 \\ -0.04}$ | 0.75^+_{-0} |
| Inclination $\pi/2 - \iota - \pi/2 $ | $0.83^{+0.23}_{-0.47}$ rad | $0.58\substack{+0.4\\-0.3}$ |
| Azimuth | $0.65^{+0.86}_{-0.54}$ rad | $0.78^{+1.2}_{-1.2}$ |
| Luminosity distance | 571 ⁺³⁴⁸ ₋₁₈₁ Mpc | 700^{+292}_{-279} |
| Redshift | $0.12\substack{+0.05 \\ -0.04}$ | 0.14^{+}_{-} |
| Total or final redshifted mass | $258^{+9}_{-9}~M_{\odot}$ | 261^{+10}_{-11} |
| Bosonic field frequency ω/μ_V | $0.893\substack{+0.015\\-0.015}$ | (*)0.905 |
| Boson mass μ_V [×10 ⁻¹³] | $8.72^{+0.73}_{-0.82}$ eV | $8.59_{-0.5}^{+0.5}$ |
| Maximal boson star mass | $173^{+19}_{-14}~M_{\odot}$ | 175^{+13}_{-11} |


~~~~~

| Gvv 19052 i Parameter                    | is (Froca-starr                  | nerger <i>)</i>                         |                            |                                                                            |
|------------------------------------------|----------------------------------|-----------------------------------------|----------------------------|----------------------------------------------------------------------------|
| Parameter                                | $q = 1 \mod del$                 | $q \neq 1 \mod 1$                       | LVC (BBH)                  |                                                                            |
| Primary mass                             | $115^{+7}_{-8}~M_{\odot}$        | $115^{+7}_{-8}~M_{\odot}$               |                            |                                                                            |
| Secondary mass                           | $115^{+7}_{-8}~M_{\odot}$        | $111^{+7}_{-15}~M_{\odot}$              |                            |                                                                            |
| Total or final mass                      | $231^{+13}_{-17}~M_{\odot}$      | $228^{+17}_{-15}~M_{\odot}$             |                            |                                                                            |
| Final spin                               | $0.75\substack{+0.08 \\ -0.04}$  | $0.75\substack{+0.08 \\ -0.04}$         |                            |                                                                            |
| Inclination $\pi/2 -  \iota - \pi/2 $    | $0.83^{+0.23}_{-0.47}$ rad       | $0.58^{+0.40}_{-0.39}$ rad              |                            |                                                                            |
| Azimuth                                  | $0.65^{+0.86}_{-0.54}$ rad       | $0.78^{+1.23}_{-1.20}$ rad              |                            |                                                                            |
| Luminosity distance                      | $571^{+348}_{-181}$ Mpc          | 700 <sup>+292</sup> <sub>-279</sub> Mpc |                            |                                                                            |
| Redshift                                 | $0.12\substack{+0.05 \\ -0.04}$  | $0.14\substack{+0.06 \\ -0.05}$         |                            |                                                                            |
| Total or final redshifted mass           | $258^{+9}_{-9}~M_{\odot}$        | $261^{+10}_{-11}~M_{\odot}$             | $272^{+26}_{-27}M_{\odot}$ | Circular mergers are louder<br>Larger initial mass needed to get same fina |
| Bosonic field frequency $\omega/\mu_V$   | $0.893\substack{+0.015\\-0.015}$ | $(*)0.905^{+0.012}_{-0.042}$            |                            |                                                                            |
| Boson mass $\mu_V$ [×10 <sup>-13</sup> ] | $8.72^{+0.73}_{-0.82}$ eV        | $8.59^{+0.58}_{-0.57}$ eV               |                            |                                                                            |
| Maximal boson star mass                  | $173^{+19}_{-14}~M_{\odot}$      | $175^{+13}_{-11}~M_{\odot}$             |                            |                                                                            |
|                                          |                                  |                                         |                            |                                                                            |



al BH

M

|                                          | `                                       |                                         |                            |                                                                           |
|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|---------------------------------------------------------------------------|
| Parameter                                | $q = 1 \mod del$                        | $q \neq 1 \mod$                         | LVC (BBH)                  |                                                                           |
| Primary mass                             | $115^{+7}_{-8}~M_{\odot}$               | $115^{+7}_{-8}~M_{\odot}$               |                            |                                                                           |
| Secondary mass                           | $115^{+7}_{-8}~M_{\odot}$               | $111^{+7}_{-15}~M_{\odot}$              |                            |                                                                           |
| Total or final mass                      | $231^{+13}_{-17}~M_{\odot}$             | $228^{+17}_{-15}~M_{\odot}$             |                            |                                                                           |
| Final spin                               | $0.75\substack{+0.08 \\ -0.04}$         | $0.75\substack{+0.08 \\ -0.04}$         |                            |                                                                           |
| Inclination $\pi/2 -  \iota - \pi/2 $    | $0.83^{+0.23}_{-0.47}$ rad              | $0.58^{+0.40}_{-0.39}$ rad              |                            |                                                                           |
| Azimuth                                  | $0.65^{+0.86}_{-0.54}$ rad              | $0.78^{+1.23}_{-1.20}$ rad              |                            |                                                                           |
| Luminosity distance                      | 571 <sup>+348</sup> <sub>-181</sub> Mpc | 700 <sup>+292</sup> <sub>-279</sub> Mpc | $5300^{+2600}_{-2400}Mpc$  | Much closer than a BBH                                                    |
| Redshift                                 | $0.12\substack{+0.05 \\ -0.04}$         | $0.14\substack{+0.06 \\ -0.05}$         |                            |                                                                           |
| Total or final redshifted mass           | $258^{+9}_{-9}~M_{\odot}$               | $261^{+10}_{-11}~M_{\odot}$             | $272^{+26}_{-27}M_{\odot}$ | Circular mergers are louder<br>Larger initial mass needed to get same fin |
| Bosonic field frequency $\omega/\mu_V$   | $0.893^{+0.015}_{-0.015}$               | $(*)0.905^{+0.012}_{-0.042}$            |                            |                                                                           |
| Boson mass $\mu_V$ [×10 <sup>-13</sup> ] | $8.72^{+0.73}_{-0.82}$ eV               | $8.59^{+0.58}_{-0.57}$ eV               |                            |                                                                           |
| Maximal boson star mass                  | $173^{+19}_{-14}~M_{\odot}$             | $175^{+13}_{-11}~M_{\odot}$             |                            |                                                                           |
|                                          |                                         |                                         |                            |                                                                           |





nal BH

|                                          | \                                       |                                         |                            |                                                                           |
|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|---------------------------------------------------------------------------|
| Parameter                                | $q = 1 \mod del$                        | $q \neq 1 \mod$                         | LVC (BBH)                  |                                                                           |
| Primary mass                             | $115^{+7}_{-8}~M_{\odot}$               | $115^{+7}_{-8}~M_{\odot}$               |                            |                                                                           |
| Secondary mass                           | $115^{+7}_{-8}~M_{\odot}$               | $111^{+7}_{-15}~M_{\odot}$              |                            |                                                                           |
| Total or final mass                      | $231^{+13}_{-17}~M_{\odot}$             | $228^{+17}_{-15}~M_{\odot}$             | $150^{+29}_{-17}M_{\odot}$ | Much heavier than the BBH estimation                                      |
| Final spin                               | $0.75\substack{+0.08 \\ -0.04}$         | $0.75\substack{+0.08 \\ -0.04}$         |                            |                                                                           |
| Inclination $\pi/2 -  \iota - \pi/2 $    | $0.83^{+0.23}_{-0.47}$ rad              | $0.58^{+0.40}_{-0.39}$ rad              |                            |                                                                           |
| Azimuth                                  | $0.65^{+0.86}_{-0.54}$ rad              | $0.78^{+1.23}_{-1.20}$ rad              |                            |                                                                           |
| Luminosity distance                      | 571 <sup>+348</sup> <sub>-181</sub> Mpc | 700 <sup>+292</sup> <sub>-279</sub> Mpc | $5300^{+2600}_{-2400}Mpc$  | Much closer than a BBH                                                    |
| Redshift                                 | $0.12\substack{+0.05 \\ -0.04}$         | $0.14\substack{+0.06 \\ -0.05}$         |                            |                                                                           |
| Total or final redshifted mass           | $258^{+9}_{-9}~M_{\odot}$               | $261^{+10}_{-11}~M_{\odot}$             | $272^{+26}_{-27}M_{\odot}$ | Circular mergers are louder<br>Larger initial mass needed to get same fin |
| Bosonic field frequency $\omega/\mu_V$   | $0.893\substack{+0.015\\-0.015}$        | $(*)0.905^{+0.012}_{-0.042}$            |                            |                                                                           |
| Boson mass $\mu_V$ [×10 <sup>-13</sup> ] | $8.72^{+0.73}_{-0.82}$ eV               | $8.59^{+0.58}_{-0.57}$ eV               |                            |                                                                           |
| Maximal boson star mass                  | $173^{+19}_{-14}~M_{\odot}$             | $175^{+13}_{-11}~M_{\odot}$             |                            |                                                                           |
|                                          |                                         |                                         |                            |                                                                           |



nal BH

M

# Initial study: Model Selection

Distance prior: Uniform in-comoving volume

| Waveform model                   | $\log \mathcal{B}$ | $\log \mathcal{L}_{\max}$ |
|----------------------------------|--------------------|---------------------------|
| Quasi-circular Binary Black Hole | 80.1               | 105.2                     |
| Head-on Equal-mass Proca Stars   | 80.9               | 106.7                     |
| Head-on Unequal-mass Proca Stars | 82.0               | 106.5                     |
| Head-on Binary Black Hole        | 75.9               | 103.2                     |





# Initial study: Model Selection

Distance prior: Uniform in-comoving volume

| Waveform model                   | $\log \mathcal{B}$ | $\log \mathcal{L}_{\max}$ |
|----------------------------------|--------------------|---------------------------|
| Quasi-circular Binary Black Hole | 80.1               | 105.2                     |
| Head-on Equal-mass Proca Stars   | 80.9               | 106.7                     |
| Head-on Unequal-mass Proca Stars | 82.0               | 106.5                     |
| Head-on Binary Black Hole        | 75.9               | 103.2                     |

P(Proca q=1) $= e^{(80.9-80.0)} \simeq 2.5 \quad \frac{P(\text{Proca } q \neq 1)}{P(\text{BBH})} \simeq 6.7$ P(BBH)

Reasonable, but this favours loud BBH sources



![](_page_43_Picture_7.jpeg)

# Initial study: Model Selection

Distance prior: Uniform in-comoving volume

 $\sim vv$ 

| Waveform Model                   | $\log \mathcal{B}$ | $\log \mathcal{L}_{Max}$ |
|----------------------------------|--------------------|--------------------------|
| Quasi-circular Binary Black Hole | 80.1               | 105.2                    |
| Head-on Equal-mass Proca Stars   | 83.5               | 106.7                    |
| Head-on Unequal-mass Proca Stars | 84.3               | 106.5                    |
| Head-on Binary Black Hole        | 78.0               | 103.2                    |

 $rac{P(\operatorname{Proca} q \neq 1)}{P(\operatorname{BBH})} \simeq 70$  $rac{P(\operatorname{Proca} q=1)}{P(\operatorname{BBH})} \simeq 30$ 

![](_page_44_Figure_5.jpeg)

![](_page_44_Picture_6.jpeg)

![](_page_45_Figure_0.jpeg)

Head-on black-holes could not provide us with enough final spin

![](_page_45_Picture_4.jpeg)

M~~~~

![](_page_46_Figure_0.jpeg)

~~~~~~

Head-on Proca stars can

M

Lack of power before signal peak: immediate ringdown of final black hole

M~~~~

Transient hypermassive Proca star: power before signal peak

M~~~~

Bosonic field frequency

m

Boson mass

 $\mu_V^{\text{GW190521, q=1}} = 8.67^{+0.73}_{-0.82} \times 10^{-13} eV$


~~~~

## Updated Result

M

![](_page_50_Picture_3.jpeg)

![](_page_51_Figure_0.jpeg)

~~~~

M

Enlarged waveform family

We add the (3,3) mode See Capano+ 2021

Increased Max LogLikelihood: from 106 to 110

Mildly increased Log Bayes Factor: from 80.9 to 81.46

 $\mu_V^{\text{GW190521, Updated, Preliminary}} = 8.70^{+0.75}_{-0.69} \times 10^{-13} eV$

M

Too massive Proca star: collapse to black hole

$$\frac{M_{max}}{M_{\odot}} = 1.125 \times \frac{1.34 \times 10^{-10} eV}{\mu_V}$$

Final Proca star less massive: no collapse, no ringdown

Previous LVC events discarded as head-on Proca star mergers (with same boson mass)

Too massive Proca star: collapse to black hole

$$\frac{M_{max}}{M_{\odot}} = 1.125 \times \frac{1.34 \times 10^{-10} eV}{\mu_V}$$

Final Proca star less massive: no collapse, no ringdown

Previous LVC events discarded as head-on Proca star mergers (with same boson mass)

Too massive Proca star: collapse to black hole

$$\frac{M_{max}}{M_{\odot}} = 1.125 \times \frac{1.34 \times 10^{-10} eV}{\mu_V}$$

~~~~

Final Proca star less massive: no collapse, no ringdown

Previous LVC events discarded as head-on Proca star mergers (with same boson mass)

$$M_{\rm max}^{\rm Proca} = 174_{-14}^{+15} M_{\odot}$$

![](_page_55_Figure_6.jpeg)

![](_page_55_Figure_7.jpeg)

![](_page_55_Picture_8.jpeg)

![](_page_55_Picture_9.jpeg)

![](_page_56_Picture_0.jpeg)

Take with a grain of salt

## PRELIMINAR

~~~~\\\\


Parameter inconsistency across BBH models

Not ruled out as Proca star merger

LogB ~ 0 (as probable as a BBH)

Boson mass:

 $\mu_B^{200114} = 10.19^{+0.69}_{-0.55} \times 10^{-13} eV$

False Alarm Rate ~ 1/17yr

Second-most significant IMBH trigger reported by LVC

Parameter inconsistency across BBH models

Not ruled out as Proca star merger

LogB ~ 0 (as probable as a BBH)

Boson mass:

~~~~

![](_page_58_Figure_8.jpeg)

![](_page_58_Picture_9.jpeg)

![](_page_58_Picture_10.jpeg)

Second-most significant IMBH trigger reported by LVC

Parameter inconsistency across BBH models

Not ruled out as Proca star merger

LogB (BBH vs. Proca Star) ~ 0 (as probable as a BBH)

Boson mass:

![](_page_59_Figure_7.jpeg)

Second-most significant IMBH trigger reported by LVC Parameter inconsistency across BBH models Not ruled out as Proca star merger LogB (BBH vs. Proca Star) ~ 0 (as probable as a BBH) Boson mass:

![](_page_60_Figure_3.jpeg)

Second-most significant IMBH trigger reported by LVC Parameter inconsistency across BBH models Not ruled out as Proca star merger LogB (BBH vs. Proca Star) ~ 0 (as probable as a BBH) Boson mass:

 $\mu_B^{200114} = 10.19^{+0.69}_{-0.55} \times 10^{-13} eV$ 

![](_page_61_Figure_3.jpeg)

Second-most significant IMBH trigger reported by LVC

Parameter inconsistency across BBH models

Not ruled out as Proca star merger

LogB ~ 0 (as probable as a BBH)

Boson mass:

![](_page_62_Figure_8.jpeg)

![](_page_62_Picture_9.jpeg)

![](_page_63_Figure_0.jpeg)

~~~~

| 3(| $) \cap$ |
|----|----------|
| | |
| | |

| Parameter | GW190521 | S2001 |
|--|------------------------------------|------------------------|
| Primary mass | $124^{+17}_{-12} \ M_{\odot}$ | 113^{+9}_{-9} . |
| Secondary mass | $95^{+10}_{-13} \ M_{\odot}$ | 97^{+8}_{-10} |
| Total / Final mass | $231^{+15}_{-16}~M_{\odot}$ | 217^{+16}_{-16} |
| Final spin | $0.75\substack{+0.08 \\ -0.04}$ | 0.75^{+0}_{-0} |
| Inclination $\pi/2 - \iota - \pi/2 $ | $0.66^{+0.37}_{-0.45}$ rad | $0.93^{+0.39}_{-0.29}$ |
| Azimuth | $0.65^{+0.86}_{-0.54}$ rad | $0.78^{+1.2}_{-1.2}$ |
| Luminosity distance | 571^{+348}_{-181} Mpc | 155^{+80}_{-52} |
| Redshift | $0.12\substack{+0.07 \\ -0.05}$ | 0.034^{+0}_{-0} |
| Total / Final redshifted mass | $259^{+10}_{-10} \ M_{\odot}$ | 217^{+16}_{-16} |
| Primary boson field frequency ω/μ_V | $0.880\substack{+0.032\\-0.080}$ | 0.845^{+0}_{-0} |
| Secondary boson field frequency ω/μ_V | $0.910\substack{+0.015 \\ -0.015}$ | 0.895^{+0}_{-0} |
| Boson mass $\mu_V \ [\times 10^{-13}]$ | $8.70^{+0.75}_{-0.69}$ eV | $10.19^{+0.6}_{-0.5}$ |
| Maximal boson star mass | $173^{+15}_{-14} \ M_{\odot}$ | 147^{+8}_{-9} |

M


~~~~~~

## GW190521 and S200114: boson mass consistency

Parameter	GW190521	S2001
Primary mass	$124^{+17}_{-12} \ M_{\odot}$	$113^{+9}_{-9}$
Secondary mass	$95^{+10}_{-13} \ M_{\odot}$	$97^{+8}_{-10}$ .
Total / Final mass	$231^{+15}_{-16} M_{\odot}$	$217^{+16}_{-16}$
Final spin	$0.75\substack{+0.08 \\ -0.04}$	$0.75^{+0}_{-0}$
Inclination $\pi/2 -  \iota - \pi/2 $	$0.66^{+0.37}_{-0.45}$ rad	$0.93^{+0.3}_{-0.2}$
Azimuth	$0.65^{+0.86}_{-0.54}$ rad	$0.78^{+1.2}_{-1.2}$
Luminosity distance	$571^{+348}_{-181}$ Mpc	$155^{+80}_{-52}$
Redshift	$0.12^{+0.07}_{-0.05}$	$0.034^{+0}_{-0}$
Total / Final redshifted mass	$259^{+10}_{-10} M_{\odot}$	$217^{+16}_{-16}$
Primary boson field frequency $\omega/\mu_V$	$0.880\substack{+0.032\\-0.080}$	$0.845^{+0}_{-0}$
Secondary boson field frequency $\omega/\mu_V$	$0.910\substack{+0.015\\-0.015}$	$0.895^{+0}_{-0}$
Boson mass $\mu_V \ [\times 10^{-13}]$	$8.70^{+0.75}_{-0.69}$ eV	$10.19^{+0.0}_{-0.0}$
Maximal boson star mass	$173^{+15}_{-14}~M_{\odot}$	$147^{+8}_{-9}$

![](_page_64_Figure_3.jpeg)

![](_page_64_Figure_5.jpeg)

This talk:

GW190521 has brought us in the realm of ¿what are we observing? Consistent with a head-on merger of Proca stars Second, low significance trigger S200114 (ongoing) Consistent masses at 90% C.I.

 $\mu_B^{190521} = 8.70^{+0.75}_{-0.69} \times 10^{-13} eV \ \mu_B^{200114} = 10.19^{+0.69}_{-0.55} \times 10^{-13} eV$ 

![](_page_65_Picture_6.jpeg)

![](_page_65_Picture_7.jpeg)

![](_page_65_Picture_8.jpeg)

This talk:

GW190521 has brought us in the realm of ¿what are we observing? Consistent with a head-on merger of Proca stars Second, low significance trigger S200114 (ongoing) Consistent masses at 90% C.I.

 $\mu_B^{190521} = 8.70^{+0.75}_{-0.69} \times 10^{-13} eV \ \mu_B^{200114} = 10.19^{+0.69}_{-0.55} \times 10^{-13} eV$ 

# The future:

Simulations for less eccentric configurations: large room for improvement!!!!

Targeted search for boson-star mergers

Mass consistency across events: population studies. How many ultralight bosons are there, if any?

![](_page_66_Picture_11.jpeg)

![](_page_66_Picture_12.jpeg)

Gravitational-wave data analysis with the Newmann-Penrose scalar

![](_page_67_Picture_1.jpeg)

------

# $\Psi_4$

![](_page_67_Picture_3.jpeg)

# Numerical Relativity simulations extract GWs in form

Obtention of strain requires of double integration plus cleaning procedure

Short numerical simulations may suffer from artefacts

![](_page_68_Figure_3.jpeg)

ו of 
$$\Psi_4=rac{d^2h}{dt^2}$$

M.....

Numerical Relativity simulations extract GWs in form of  $\Psi_4 = \frac{d^2h}{dt^2}$ 

Obtention of strain requires of double integration plus cleaning procedure

Short numerical simulations may suffer from artefacts

![](_page_69_Figure_3.jpeg)

![](_page_69_Figure_8.jpeg)

Numerical Relativity simulations extract GWs in form of  $\Psi_4 = \frac{d^2h}{dt^2}$ Obtention of strain requires of double integration plus cleaning procedure

Short numerical simulations may suffer from artefacts

![](_page_70_Figure_2.jpeg)

![](_page_70_Figure_6.jpeg)

![](_page_71_Picture_0.jpeg)

Perform second-order differencing of GW strain data

Use as templates  $\Psi_4$  directly extracted from NR simulations

Compute the  $\Psi_4$  - PSD as:

Run parameter estimation as usual
### Perform second-order finite differencing of GW strain data

Use as templates  $\Psi_4$  directly extracted from NR simulations

Compute the  $\Psi_4$  - PSD as:

Run parameter estimation as usual





### Perform second-order finite differencing of GW strain data

### Use as templates $\Psi_4$ directly extracted from NR simulations

## Compute the $\Psi_4$ - PSD as:

Run parameter estimation as usual



Perform second-order finite differencing of GW strain data

Use as templates  $\Psi_4$  directly extracted from NR simulations

### Compute the $\Psi_4$ - PSD as:

$$S^{(\psi_4)}[k] = \frac{1}{(\Delta t)^4} (6 - 8\cos(2\pi k/N) + 2\cos(4\pi k/N))$$

Run parameter estimation as usual

 $(N))S^{h}[k]$ Isaac Wong (CUHK)



Perform second-order finite differencing of GW strain data

Use as templates  $\Psi_4$  directly extracted from NR simulations

Compute the  $\Psi_4$  - PSD as:

$$S^{(\psi_4)}[k] = \frac{1}{(\Delta t)^4} (6 - 8\cos(2\pi k/N) + 2\cos(4\pi k/N))$$

Run parameter estimation as usual

Isaac Wong (CUHK)



Perform second-order finite differencing of GW strain data

Use as templates  $\Psi_4$  directly extracted from NR simulations

Compute the  $\Psi_4$  - PSD as:

$$S^{(\psi_4)}[k] = \frac{1}{(\Delta t)^4} (6 - 8\cos(2\pi k/N) + 2\cos(4\pi k/N))$$

Run parameter estimation as usual



## $N))S^{h}[k]$





# In which situations can one mistake precession by eccentricity?



JCB, Sanchis-Gual, Torres-Forne and Font: arXiv 2009.01066 (2020), Accepted in Phys. Rev. Lett



- Distance of ~500Mpc (5Gpc for LIGO-Virgo)
- Much lower redshift: much larger source frame mass  $M_{source} = M_{det}/(1+z)$
- Discard edge-on inclinations



JCB, Sanchis-Gual et. al., Phys. Rev. Lett. 126, 081101 (2021)

# GW190521: Proca-star parameters





- Distance of ~500Mpc (5Gpc for LIGO-Virgo)
- Discard edge-on inclinations
- (2,0) mode helps to constrain inclination



JCB, Sanchis-Gual et. al., Phys. Rev. Lett. 126, 081101 (2021)

# GW190521: Proca-star parameters

• <u>GWs</u>: sum of many emission modes (multipoles)





- We can measure the azimuthal angle
- (2,0) mode introduces asymmetries in the GWs
- Star's trajectories curved by frame-dragging
- Repeat analysis without (2,0) mode
  - Evidence of (2:1) for presence of (2,0) mode
- First measurement of frame dragging in GWs

JCB, Sanchis-Gual et. al., Phys. Rev. Lett. 126, 081101 (2021)



 $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

Waveform Model	$\log \mathcal{B}$	$\log \mathcal{L}_{Max}$	
Quasi-circular Binary Black Hole	80.1	105.2	No support for $q > 2$
Quasi-circular Non-precessing Binary Black Hole	77.1	98.8	
Quasi-circular Binary Black Hole $(q \le 2)$	80.7	105.2	
Quasi-circular Binary Black Hole $(q = 1)$	81.2	105.2	
Head-on Equal-mass Proca Stars	80.9	106.7	
Head-on Unequal-mass Proca Stars	82.0	106.5	
Head-on Binary Black Hole	75.9	103.2	

"Averaged" likelihood x Prior

"Bad" regions of parameter space reduce Z





 $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

Waveform Model	$\log \mathcal{B}$	$\log \mathcal{L}_{Max}$	
Quasi-circular Binary Black Hole	80.1	105.2	
Quasi-circular Non-precessing Binary Black Hole	e 77.1	98.8	Precession is a necessary complication
Quasi-circular Binary Black Hole $(q \le 2)$	80.7	105.2	
Quasi-circular Binary Black Hole $(q = 1)$	81.2	105.2	
Head-on Equal-mass Proca Stars	80.9	106.7	
Head-on Unequal-mass Proca Stars	82.0	106.5	
Head-on Binary Black Hole	75.9	103.2	

"Averaged" likelihood x Prior

"Bad" regions of parameter space reduce Z





 $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

Waveform Model	$\log \mathcal{B}$ lo	$\mathrm{g}\mathcal{L}_{Max}$
Quasi-circular Binary Black Hole	80.1	105.2
Quasi-circular Non-precessing Binary Black H	Iole 77.1	98.8
Quasi-circular Binary Black Hole $(q \le 2)$	80.7	105.2
Quasi-circular Binary Black Hole $(q = 1)$	81.2	105.2
Head-on Equal-mass Proca Stars	80.9	106.7
Head-on Unequal-mass Proca Stars	82.0	106.5
Head-on Binary Black Hole	75.9	103.2

-----

"Averaged" likelihood x Prior

Removing q > 2 helps BBHs

"Bad" regions of parameter space reduce Z



M

 $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

Waveform Model	$\log \mathcal{B}$	$\log \mathcal{L}$
Quasi-circular Binary Black Hole	80.1	105
Quasi-circular Non-precessing Binary Black Hole	77.1	98
Quasi-circular Binary Black Hole $(q \leq 2)$	80.7	105
Quasi-circular Binary Black Hole $(q = 1)$	81.2	105
Head-on Equal-mass Proca Stars	80.9	106
Head-on Unequal-mass Proca Stars	82.0	106
Head-on Binary Black Hole	75.9	103

-----

"Averaged" likelihood x Prior

"Bad" regions of parameter space reduce Z





M

 $Z(\theta|d) = \int \pi(\theta) \mathcal{L}(\theta|d) d\theta$ 

Waveform Model	$\log \mathcal{B}$	$\log \mathcal{L}$
Quasi-circular Binary Black Hole	80.1	105
Quasi-circular Non-precessing Binary Black Hole	77.1	98
Quasi-circular Binary Black Hole $(q \le 2)$	80.7	105
Quasi-circular Binary Black Hole $(q = 1)$	81.2	105
Head-on Equal-mass Proca Stars	80.9	106
Head-on Unequal-mass Proca Stars	82.0	106
Head-on Binary Black Hole	75.9	103

-----

"Averaged" likelihood x Prior

"Bad" regions of parameter space reduce Z

Max
.2
8
.2
.2
.7
.5
.2

Restricting to q=1 brings BBH closer to Proca



