A detailed analysis of GW190521 with phenomenological waveform models

Marta Colleoni University of the Balearic Islands, 11th Iberian Gravitational Waves Meeting

Héctor Estellés, Sascha Husa, Maite Mateu-Lucena, Lluc Planas, Cecilio García-Quirós, David Keitel, Antoni Ramos-Buades

GW190521 : Why is it special?

- Mass estimate of remnant puts it in the IMBH range
- LVC analysis confidently placed primary within the pair-instability supernova mass-gap, in contrast with population previously observed by LIGO
- Evidence of in-plane spins
- Properties might point to a dynamical formation channel (Kimball+20, Gerosa+21)

Anatomy of the signal

- Short signal of approximately 0.1 s
- Very few cycles: prone to degeneracies
- Strong suppression of inspiral cycles: quasi-circular templates recover strong in-plane spins to model this feature.
- However, several possible alternative explanations have been put forward! (see also Juan's talk)
 - Dynamical capture in dense stellar environment (Gayathri+ 20, Romero-Shaw+ 20, Gamba+ 21)
 - Head-on collision (Bustillo + 20)
 - Exotic objects (Bustillo +20)

Estellés+21

Our perspective

- We stick to the quasi-circular coalescence assumption
- Investigate the effects of waveform systematics on special events
- As detector sensitivity improves, we can expect more non-vanilla events: related to specific modelling approximations

need to understand limits of current QC BBH baselines and differences

Waveform models for QC BBH inspirals

- NR Surrogates: "interpolation" of NR waveforms (Field+13, NRSur7dq2: Blackman+ 17, NRSur7dq4: Varma+ 19)
 - frequency and total mass models can handle
- - Precession: not directly calibrated to NR. Twist-up aligned spin model, solving EOB precession equations
 - high computational cost!
- - waveforms in each
 - Traditionally built in FD, but now also constructed in TD (see Héctor's talk)

• Highest faithfulness against NR simulations, but relatively short waveforms (around 20 orbits) before merger —> imply limitations of minimum

• SEOB models (Taracchini+ 13, Pan+ 14, latest additions: SEOBNRv4HM (Cotesta+ 18), SEOBNRv4PHM (Ossokine+ 20))

• Precessing models track consistently precession dynamics, at the price of solving expensive differential equations -->

• Phenom models (Ajith+ 07, Khan+15, London+16, Khan+19, Pratten+20, García-Quirós+20, Estellés+20, Estellés +21…)

• split a compact-binary coalescence into three regions and fit amplitude and phase to hybrid EOB/NR

Latest generation of Phenom models

We have developed two complementary phenomenological models:

- a **frequency-domain** family (IMRPhenomX* (Pratten+ 19, Garcia-Quirós+ 19, Pratten+ 20))
 - Accurate phasing of aligned spin model
 - Artificially prolong inspiral description of transfer functions into merger-RD
 - a **time-domain** family: IMRPhenomT* (Estellés+ 20, Estellés+ 21))
 - Does not rely on SPA and offer a better RD description (O'Shaughnessy, + 13)

Cheap enough to allow systematic studies of effects of priors, sampler settings, specific model approximations, etc...(see Maite's talk)

Was it an intermediate mass-ratio inspiral?

- Mass prior had a hard cut on mass ratio, to adjust to the validity domain of one of the approximants used (NRSur7dq4): $q \ge 0.17$, where $q \le 1$
- This implies modes in the posterior with yet more unequal masses are excluded.
- A later reanalysis of public data with PhenomXPHM by Nitz&Capano found that, by extending the LVC prior bounds, additional small mass ratio modes could be found

Estellés+ 21

A different picture?

- New analysis finds additional modes and max likelihood sample around q~0.1
- These modes correlates with a strongly negative $\chi_{\rm eff}$
- The source masses of the small-q modes lie outside the PISN mass gap
- Question: how much of this depends on choice of
 - priors
 - specific waveform model
 - sampler settings

Estellés+ 21

The importance of priors

- Nitz&Capano: priors used in early analyses led to undersample small-q region
- Fishbach&Holz: merger rate of systems involving a mass-gap component is expected to be very low \rightarrow impose a population-informed prior: assume the secondary belongs to previously observed population \rightarrow components can no longer confidently placed inside PISN mass-gap
- Need also to consider the presence of 2G generation BHs! (Kimball + 20, depend on cluster escape velocity)

Fishbach&Holz, 2020 ApJL 904 L26

Analysis settings

- q)
- Reweight posteriors to meaningfully compare different results
- varying sampler settings to test robustness

• Study the effect of different priors. E.g. different mass ratio priors, some of which enhance the small-q region of par space (restricted priors, uniform in 1/

Repeat the runs with different sampling codes (LALInference and pBilby),

TD-FD comparison

100

 $m_2^{\rm src}[M_\odot]$ 80

40

20

Estellés+ 21

- We have analysed the event both with TD and FD Phenom models
- We find evidence for a $q \approx 0.2$ mode that correlates with positive (negative) mass ratios
- Position of max \mathscr{L} sample highly variable

effective spins when running TD (FD) models: no clear support for more extreme

Comparison TD-FD cc.ed

- Adding precession helps to break the degeneracy between distance and inclination only for the TD model (and also in a higher BF)
- TD model predicts rather high precession spin!

Association with an AGN flare

- There was a tentative association between GW190521 and the flare ZTF19abanrhr (Graham+ 20), generally deemed inconclusive (Ashton+ 20, Palmese+20)
- Nonetheless, we study the impact on posteriors of constraining the source sky localisation (interesting in the prospect of future multi-messenger observations)
- We confirm the results of Ashton et al.: only mild evidence of association

Mass-gap hypothesis

Waveform Model	NRSur7dq4	Pv3HM	v4PHM	XPHM (NC)	XPHM	TPHM $\ell \leq 4$	TPHM $\ell \leq 5$
Primary BH mass m_1	85^{+21}_{-14}	90^{+23}_{-16}	99^{+42}_{-19}	129^{+46}_{-37}	97^{+34}_{-21}	109^{+80}_{-22}	107^{+68}_{-20}
Secondary BH mass m_2	66^{+17}_{-18}	65^{+16}_{-18}	71^{+21}_{-28}	32^{+33}_{-17}	59^{+22}_{-25}	65^{+28}_{-34}	68^{+26}_{-33}
Total BBH mass M	150^{+29}_{-17}	154^{+25}_{-16}	170^{+36}_{-23}	169^{+23}_{-20}	154^{+35}_{-16}	181^{+44}_{-27}	179^{+39}_{-25}
Binary chirp mass $\mathcal M$	64^{+13}_{-8}	65^{+11}_{-7}	71^{+15}_{-10}	55^{+14}_{-16}	64^{+15}_{-10}	71^{+16}_{-11}	72^{+16}_{-11}
Mass-ratio $q = m_2/m_1$	$0.79^{+0.19}_{-0.29}$	$0.73^{+0.24}_{-0.29}$	$0.74^{+0.23}_{-0.42}$	$0.23^{+0.46}_{-0.14}$	$0.61^{+0.32}_{-0.36}$	$0.63^{+0.32}_{-0.46}$	$0.66^{+0.29}_{-0.46}$

- We test two possible ranges, a "low" gap $[50,120]M_{\odot}$ and a "high" gap $\approx [70,160]M_{\odot}$
- Probability of at least one mass in the gap is generally above 70% for the "low" gap and and above 85% for the "high gap"

• Intrinsic difficulty: boundaries of the gap are very uncertain, complex dependence on reaction rates and aspects of stellar evolution and dynamics (Woosley 2016, Farmer +20, Woosley&Heger 21, Mehta+ 21).

Conclusions

- impact on PE (more injections, waveform comparison etc...)
- Strong motivation to develop models incorporating more physics: e.g. eccentricity (see Toni's talk)
- Phenomenological models are under constant improvement: stay tuned!

• We do expect systematic differences among different template families, due to specific modelling assumptions: need to understand better their extent and