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GW190521 : Why is it special?

• Mass estimate of remnant puts it in the IMBH range 

• LVC analysis confidently placed primary within the pair-instability supernova 
mass-gap, in contrast with population previously observed by LIGO 

• Evidence of in-plane spins 

• Properties might point to a dynamical formation channel (Kimball+20, 
Gerosa+21)



Anatomy of the signal

• Short signal of approximately 0.1 s  

• Very few cycles: prone to degeneracies 

• Strong suppression of inspiral cycles: quasi-circular 
templates recover strong in-plane spins to model this 
feature.  

• However, several possible alternative explanations 
have been put forward! (see also Juan’s talk)  

- Dynamical capture in dense stellar environment 
(Gayathri+ 20, Romero-Shaw+ 20, Gamba+ 21) 

- Head-on collision (Bustillo + 20) 
- Exotic objects (Bustillo +20) 
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FIG. 4. Comparison of the maximum-likelihood (maxL) templates
from LALInference runs with the IMRP�����TPHM PV=300 FS=4
model against detector data for di�erent harmonic content indicated
by `max from 2 to 5. Each panel shows the time-domain detector data
of LIGO Hanford (H1), LIGO Livingston (L1) and Virgo (V1) respec-
tively, after whitening by the instrument’s noise amplitude spectral
density (purple lines), along with point estimate waveform reconstruc-
tions from the cWB analysis (dashed black lines, from [78]) and the
IMRP�����TPHM maxL templates whitened by the instrument’s
noise amplitude spectral density (colored solid lines). Red dashed
vertical lines show the coalescence time as estimated with IMRP��-
���TPHM. Times shown are relative to May 21, 2019 at 03:02:29
UTC.

in the LVC publications. The same goes for other key param-
eters, such as source-frame masses, distance and inclination
(see Fig. 1 and 6 in [4]). For all these results, both compo-
nent masses lie confidently within the PISN mass gap (at 90%

credible intervals).

C. Analysis with IMRP�����XPHM

The results reported in [1] for the IMRP�����XPHM model
were obtained with the default version of the model (correspond-
ing to MSA Euler angles and final spin version FS=3). The
posteriors obtained by [1] have non-zero support in regions of
parameter space where the direction of the total angular mo-
mentum J flips (see Sec. II B) and would thus require careful
cross-checks for robustness, as discussed previously. This is
due to the fact that for the default version we had initially im-
plemented a di�erent behavior as for other options: instead of
attempting to track the direction of the total angular momentum
J, a warning message was to be printed, alerting the user that
the model is less reliable in case of flipped J. After the publica-
tion of [1] we however realized that the warning messages had
not been printed correctly when the calculation of subdominant
harmonics was activated. To avoid confusion, we have more
recently implemented a change harmonizing the behavior of
the di�erent final-spin versions, and the code now always tracks
the direction of J for all parameter settings; this is now also
described in the recently updated Sec. IV D of [13].

With this change all final-spin versions now produce consis-
tent results, as shown in Fig. 6, with a much reduced support
for the parameter region where the mass ratio is high and the
e�ective spin negative, and where thus J may flip its sign. In par-
ticular, we note that, using the latest code version, the support
for both masses being outside the mass-gap is drastically re-
duced, see Table V. Consistent results with the updated default
version have also been reported by [72] and [70], but here we
present the first direct comparison using multiple final-spin ver-
sions. We also find in Fig. 6 that when changing the final-spin
version, the position of maximum-likelihood sample changes
considerably, this is however not surprising as discussed in Sec.
IV D.

D. Multi-modality and support for high Q

We now turn to examining the results obtained with the de-
fault settings of IMRP�����XPHM and IMRP�����TPHM
with LALInference and pBilby, where in both cases the two
approximants were run with the same priors and sampler set-
tings. As we have already mentioned, pBilby posteriors have
been re-weighted to allow a direct comparison with LALInfer-
ence results, see Sec. IV C. Results are shown in Fig. 2. One
can appreciate a remarkable consistency between the two sam-
pling codes. It is also clear that mass-ratio posteriors have a
multi-modal behavior for both models. The main di�erence
here is that more unequal mass ratios (q ⇠ 0.25) in IMRP��-
���XPHM are correlated with large negative �e↵ while the
unequal-mass-ratio support for IMRP�����TPHM is corre-
lated with moderate positive �e↵ . Compared to inference with
aligned-spin models, support for the components to lie within
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Our perspective

• We stick to the quasi-circular coalescence assumption 

• Investigate the effects of waveform systematics on special events 

• As detector sensitivity improves, we can expect more non-vanilla events:  
need to understand limits of current QC BBH baselines and differences 
related to specific modelling approximations



Waveform models for QC BBH inspirals

• NR Surrogates: “interpolation” of NR waveforms (Field+13, NRSur7dq2: Blackman+ 17, NRSur7dq4: Varma+ 19) 

• Highest faithfulness against NR simulations, but relatively short waveforms (around 20 orbits) before merger  —> imply limitations of minimum 
frequency and total mass models can handle 

• SEOB models (Taracchini+ 13, Pan+ 14, latest additions: SEOBNRv4HM (Cotesta+ 18), SEOBNRv4PHM (Ossokine+ 20)) 

• Precession: not directly calibrated to NR. Twist-up aligned spin model, solving EOB precession equations 

• Precessing models track consistently precession dynamics, at the price of solving expensive differential equations  —> 
high computational cost!  

• Phenom models (Ajith+ 07, Khan+15, London+16, Khan+19, Pratten+20, García-Quirós+20, Estellés+20, Estellés +21… ) 

• split a compact-binary coalescence into three regions and fit amplitude and phase to hybrid EOB/NR 
waveforms in each 

• Traditionally built in FD, but now also constructed in TD (see Héctor’s talk)



We have developed two complementary phenomenological models:  

• a frequency-domain family (IMRPhenomX* (Pratten+ 19, Garcia-Quirós+ 19, Pratten+ 20 ))  

• Accurate phasing of aligned spin model 

• Artificially prolong inspiral description of transfer functions into merger-RD 

• a time-domain family: IMRPhenomT* (Estellés+ 20, Estellés+ 21)) 

• Does not rely on SPA and offer a better RD description (O’Shaughnessy,+ 13)

Latest generation of Phenom models

Cheap enough to allow systematic studies of effects of priors, sampler settings, specific model 
approximations, etc…(see Maite’s talk) 



Was it an intermediate mass-ratio inspiral?
• Mass prior had a hard cut on mass ratio, to adjust to the validity domain of one of the approximants used 

(NRSur7dq4):     

• This implies modes in the posterior with yet more unequal masses are excluded. 

• A later reanalysis of public data with PhenomXPHM by Nitz&Capano found that, by extending the LVC prior 
bounds, additional small mass ratio modes could be found

q ≥ 0.17, where q ≤ 1
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FIG. 1. Comparison of inferred posterior distributions for the o�cial results from the LVC [2, 3] and the results from Nitz and Capano [1] (the
latter have been re-weighted to a flat in component mass prior, in the detector frame). Here and in similar figures throughout the paper, the
central panel shows the 2D joint posteriors with contours marking 90% credible intervals, while the smaller panels on top and to the right show
the corresponding 1D distributions for the individual parameters, with the 90% credible interval indicated by the dashed lines. The maxL values
from the posterior samples of each run are highlighted as stars in the central panels.

IV. METHODOLOGY FOR PARAMETER ESTIMATION

A. Data set

We use public GW strain data collected by the Advanced
LIGO detectors [68] and Advanced Virgo detector [69] from the
Gravitational Wave Open Science Center (GWOSC) [70, 71],
and power spectral densities (PSDs) and calibration uncertain-
ties included in the GWOSC release [72]. From the available
GWOSC strain data sets we have selected the data sampled at
16 kHz, with a sampling rate of 1024 Hz chosen for our analy-
sis, consistent with the choice in [2, 3]. The lower and upper
cuto� frequencies for the likelihood integration were taken to
be 11.0 Hz and 512 Hz (the Nyquist frequency corresponding
to the sampling rate), again consistent with [2, 3].

B. Sampling codes

We have carried out Bayesian parameter estimation of the
signal using two publicly available codes, the Python-based
parallel Bilby (pBilby, PB) code [25, 26], which uses the
dynesty [73] variant of the nested sampling algorithm [74],
and the LALInference (LI) code [27], which is part of the
LALSuite [62] package for GW data analysis, using its imple-
mentation of Markov Chain Monte Carlo (MCMC) sampling.

Parallel Bilby provides a highly parallel and flexible imple-
mentation of nested sampling, and supports a range of priors
and choices of sampling parameters and settings. We largely

use the default settings of the code apart from the following
choices: we fix the minimal (walks) and maximal (maxmcmc)
number of MCMC steps to 200 and 15000 respectively. For our
final results we have set the number of autocorrelation times
to use before accepting a point (nact) to a value of 30. We
have varied the number of nested sampling live points (nlive)
between 1024 and 4096 for selected runs to test that we have
obtained (su�ciently) converged results, and always show the
results for nlive= 4096. In order to speed up calculations we
use distance marginalization as described in [75]. For each of
the pBilby runs we quote results for, we have carried out four
independent simulations (independent seeds), and then merged
the four posteriors to a single posterior with the PESummary
tool [76].

LALInference samples in mass ratio and chirp mass, re-
weighting to a prior that is flat in component masses as de-
scribed in [27]. We use essentially standard LALInference
settings with eight temperatures, but a large number of indepen-
dent chains, 120 for our production runs. For our LALInference
runs we do not employ the distance marginalization used for
our Bilby runs.

We have previously used pBilby as our primary code for
our re-analysis of the GW190412 event [20, 21, 24], where we
found good agreement with LALInference results as reported
in [24]. We have however found that that the computational
cost of comparably well sampled pBilby runs is significantly
higher than for LALInference runs due to the high required
settings of the nact parameter, and use LALInference for our
primary results in the present work.

Extra mode
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A different picture?

• New analysis finds additional modes and max likelihood sample around 
q~0.1 

• These modes correlates with a strongly negative  

• The source masses of the small-q modes lie outside the PISN mass gap 

• Question: how much of this depends on choice of  

- priors  

- specific waveform model 

- sampler settings  

χeff

Stress-testing current models
• GW190521: extra modes found when running PyCBC inference and IMRPhenomXPHM (Nitz&Capano 20)

• N&C conclusion: LVC analysis missed the high-q modes due to prior constraints (being q-min 
=0.17 for LVC), different distance prior and choice of sampler settings
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The importance of priors
• Nitz&Capano: priors used in early analyses led 

to undersample small-q region 

• Fishbach&Holz: merger rate of systems involving 
a mass-gap component is expected to be very 
low  impose a population-informed prior: 
assume the secondary belongs to previously 
observed population  components can no 
longer confidently placed inside PISN mass-gap  

• Need also to consider the presence of 2G 
generation BHs! (Kimball + 20, depend on 
cluster escape velocity)

→

→
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Figure 2. Posterior distribution on the source-frame primary mass using an uninformative prior (left), compared to a
population-informed prior (right) that assumes that m2 belongs to the previously-observed population of BHs (Abbott et al.
2019a). The di↵erent colored histograms correspond to di↵erent waveform models. On the left, the solid histograms assume
a flat prior on m1 and m2 and a flat prior on the comoving spacetime volume. The dashed blue histogram shows the pos-
terior under the “default” flat-in-detector-frame masses and p(dL) / d2L luminosity distance prior presented in Abbott et al.
(2020a,b). On the right, we impose a prior on m2 according to the component mass distribution inferred from the GWTC-1
distribution (Abbott et al. 2019a), but leave the flat prior on m1 (note that the new prior is on m2, but we are plotting m1).
The shaded band denotes the region of the posterior with m1 < 120 M�, in which m1 would be in the PISN mass gap. Under
the uninformative prior, the probability that m1 > 120 M� is 1.7%, 3.3%, and 14% for the NRSurd7q4 (Varma et al. 2019),
IMRPhenomPv3HM (Blanchet et al. 1995, 2005; Damour et al. 2001; Arun et al. 2009; Blanchet 2014; Khan et al. 2020), and
SEOBNRv4PHM (Buonanno & Damour 1999, 2000; Ossokine et al. 2020) waveform models respectively. Under the assumption
that m2 belongs to the black hole population found in GWTC-1, the probabilities for m1 > 120 M� increase to 39%, 31%, and
89% under the respective waveform models.

or m1 > 130M� with 25% credibility). Applying the
population prior on m2 thus results in significant sup-
port for the two black hole masses straddling the PISN
gap, with one below and one above. In Appendix B,
we find that the likelihood ratio between a flat prior
on (m1,m2) and a population-informed prior on m2

coupled with a flat prior on m1 > 120M� is of order
unity, suggesting that independently of the prior odds,
the data is consistent with both interpretations.
An alternative approach is to take a theoretically-

motivated prior rather than a prior determined by previ-
ous observations. The width of the gap may face fewer
theoretical uncertainties than its edges; Farmer et al.
(2020) predict a width of 83+5

�8
M�. Because there

is significantly more likelihood support for m1 to be
above ⇠ 100M� than below 75M�, and the opposite
holds for m2, a gap width of > 75M� naturally forces
m1 to be above the gap and m2 to be below it. We
therefore consider a uniform prior on m1 and m2 with
m1 � m2 > 75M�, finding m1 > 116M� (90% poste-
rior probability) and m2 < 41M� (90% probability).
Assuming a theoretical prior on the gap width leads us
to infer m1 and m2 values that are consistent with pre-
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Figure 3. Two-dimensional version of Fig. 2, showing re-
sults from the NRSurd7q4 waveform. Contours show 50%,
90%, and 99% credible regions. The shaded bands show
m2 > 45 M� (excluded if we believe that m2 is a conven-
tional BH) and m1 < 120 M� (excluded if we believe that
m1 is a conventional BH). The unshaded region corresponds
to the scenario in which the components straddle the gap.

dictions for the gap edges. As was the case in Fig. 3,
high values of m1, which push the BH up and out of the

Fishbach&Holz, 2020 ApJL 904 L26



Analysis settings

• Study the effect of different priors.  E.g. different mass ratio priors, some of 
which enhance the small-q region of par space (restricted priors, uniform in 1/
q) 

• Reweight posteriors to meaningfully compare different results 

• Repeat the runs with different sampling codes (LALInference and pBilby), 
varying sampler settings to test robustness 



TD-FD comparison

• We have analysed the event both with TD and FD Phenom models  

• We find evidence for a  mode that correlates with positive (negative) 
effective spins when running TD (FD) models: no clear support for more extreme 
mass ratios 

• Position of  sample highly variable

q ≈ 0.2

max ℒ
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FIG. 2. Two-dimensional joint posterior distributions for source-frame masses (left panel), and mass ratio and e�ective spin (right panel) obtained
with the default versions of IMRP�����TPHM (red: LALInference, orange: pBilby) and IMRP�����XPHM (light blue: LALInference, dark
blue: pBilby). Dashed vertical lines in the one-dimensional plots mark 90% confidence intervals and stars mark the maxL values. Unless
otherwise indicated, here and in the following figures and tables IMRP�����TPHM results correspond to `max = 4.

FIG. 3. Two-dimensional joint posterior distributions for distance and inclination (left panel), as well as for e�ective and precession spin
parameters (right panel), obtained with the default versions of IMRP�����TPHM (red: LALInference, orange: pBilby) and IMRP�����XPHM
(light blue: LALInference, dark blue: pBilby). Dashed vertical lines in the one-dimensional plots mark 90% confidence intervals and stars mark
the maxL values.

B. Non-precessing approximants

Before turning our attention to precessing models, we will
inspect results obtained with non-precessing waveform approx-
imants. In this simplified context, current waveform models

have reached a certain level of maturity, where all state-of-the-
art versions have been calibrated to NR simulations, including
the subdominant harmonics content, to a varying degree. There-
fore, we expect good agreement between di�erent models, at
least when the same subdominant mode content is included. We

Estellés+ 21



Comparison TD-FD cc.ed

• Adding precession helps to break the degeneracy between distance and 
inclination only for the TD model (and also in a higher BF) 

• TD model predicts rather high precession spin!
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Association with an AGN flare
• There was a tentative association 

between GW190521 and the flare 
ZTF19abanrhr (Graham+ 20), 
generally deemed inconclusive 
(Ashton+ 20, Palmese+20) 

• Nonetheless, we study the impact on 
posteriors of constraining the source 
sky localisation (interesting in the 
prospect of future multi-messenger 
observations) 

• We confirm the results of Ashton et 
al.: only mild evidence of association
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FIG. 10. Results for the standard runs with uninformative sky localization and distance priors compared with runs where either the 2D sky location
or the full 3D localization are fixed to those of the tentative AGN counterpart, for the IMRP�����TPHM default version with LALInference.

FIG. 11. Position of the AGN flare ZTF19abanrhr [2] compared with
the sky location posterior density for GW190521 recovered by our
default IMRP�����TPHM run.

VI. CONCLUSIONS

In this paper we have re-analyzed GW190521, the highest-
mass GW event yet detected, with two recently developed wave-
form models: First IMRP�����XPHM, which is a successor to
previous frequency-domain IMRP����� models, which have
become standard tools in GW data analysis, but are not an op-
timal choice for very high-mass events, where SNR primarily

BF fixed sky location BF fixed 3D location
TPHM `max = 4 14

+7

�5
62
+18

�14

TPHM `max = 5 13
+7

�5
64
+21

�16

XPHM `max = 4 23
+3

�3
95
+15

�13

TABLE VI. Comparison of Bayes factors for the runs with either
2D sky location or full 3D localization (sky position plus luminosity
distance) fixed to the AGN counterpart candidate [2], against the
default runs with unconstrained localization priors. While these are
quite high, it is important to take into account a full analysis of the
multi-messenger coincidence significance, see the text and Table VII.

IDL I⌦ IDLI⌦ OC/R

TPHM PV = 300 FS = 4 `max = 4 4.7 17 140 6
TPHM PV = 300 FS = 4 `max = 5 5.1 30 140 12
TPHM PV = 300 FS = 2 `max = 4 4.6 33 140 12

TPHM PV = 22311 FS = 3 `max = 4 4.7 20 110 7
XPHM LI PV = 223 FS = 3 3.8 19 110 6

TABLE VII. Posterior overlap integrals and odds for the association
between GW190521 and ZTF19abanrhr [2], following the method
from [6].

comes from the ringdown to the final Kerr black hole, as can
be seen in Fig. 4. Second, we have used the new time-domain
IMRP�����TPHM model, which improves over IMRP��-
���XPHM in how it treats precession, in particular regarding
the ringdown, and which recovers a higher SNR (however con-
sistent within statistical errors) and signal-to-noise Bayes factor
(see Table II). Our overall results are broadly consistent with



Mass-gap hypothesis

• Intrinsic difficulty: boundaries of the gap are very uncertain, complex dependence on reaction rates and 
aspects of stellar evolution and dynamics (Woosley 2016, Farmer +20, Woosley&Heger 21,Mehta+ 21).  

• We test two possible ranges, a “low” gap  and a “high” gap  

• Probability of at least one mass in the gap is generally above 70% for the “low” gap and and above 
85% for the “high gap”

[50,120]M⊙ ≈ [70,160]M⊙
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TABLE II. Network matched-filter SNRs with 90% credible intervals and log signal-to-noise Bayes factors BF for runs with waveform models
in the IMRP�����X and IMRP�����T families, including several di�erent options of the IMRP�����TPHM model. We note that the highest
BF values are recovered by IMRP�����TPHM with reduced mode content. This is consistent with the slightly negative Bayes factor for
dominant vs. higher modes reported for the NRS������ model in [3, 4], but as discussed in appendix A the posteriors become much better
resolved once including modes up to `  4, and seem mostly converged in comparison to adding further modes `  5, and hence we use the
`  4 run as our main result in this paper.

Approx. logBF ⇢H

mf
⇢L

mf
⇢V

mf
⇢N

mf

XHM 80.06 ± 0.15 8.0+0.2
�0.3 11.8+0.5

�0.3 2.4+0.7
�1.2 14.4+0.3

�0.3

XPHM PV=223 FS=3 80.43 ± 0.21 7.9+0.2
�0.3 11.8+0.5

�0.3 2.5+0.7
�1.2 14.4+0.3

�0.3

THM 79.10 ± 0.19 8.0+0.3
�0.4 11.8+0.4

�0.4 2.4+0.7
�1.2 14.4+0.3

�0.3

TPHM PV=300 FS=4 `  2 83.47 ± 0.14 7.8+0.3
�0.3 12.2+0.3

�0.4 2.7+0.8
�1.1 14.7+0.3

�0.3

TPHM PV=300 FS=4 `  3 83.45 ± 0.19 8.0+0.3
�0.3 12.2+0.3

�0.4 2.7+0.8
�1.2 14.8+0.3

�0.3

TPHM PV=300 FS=4 `  4 81.93 ± 0.24 8.0+0.3
�0.4 12.0+0.3

�0.4 2.6+0.7
�1.1 14.6+0.3

�0.3

TPHM PV=300 FS=4 `  5 81.90 ± 0.21 8.0+0.3
�0.4 12.0+0.3

�0.4 2.6+0.6
�1.1 14.6+0.3

�0.3

TPHM PV=300 FS=2 81.88 ± 0.23 8.0+0.3
�0.4 12.0+0.3

�0.4 2.6+0.7
�1.1 14.6+0.2

�0.3

TPHM PV=22311 FS=3 81.86 ± 0.30 8.0+0.3
�0.4 12.0+0.3

�0.4 2.6+0.8
�1.2 14.6+0.3

�0.3

TABLE III. Source properties for GW190521, listed as median posterior values with error estimates given by the 90% credible intervals. The
first three results columns correspond to the results reported in [3, 4], the fourth column summarizes results from [1], and the last three columns
are the new results from this paper, taken from our LALInference default runs with the standard versions of the IMRP�����XPHM and
IMRP�����TPHM waveform models (including two choices of mode content for IMRP�����TPHM, which yield very similar results)

.
Waveform Model NRS������ Pv3HM v4PHM XPHM (NC) XPHM TPHM `  4 TPHM `  5

Primary BH mass m1 85
+21

�14
90
+23

�16
99
+42

�19
129

+46

�37
97
+34

�21
109

+80

�22
107

+68

�20

Secondary BH mass m2 66
+17

�18
65
+16

�18
71
+21

�28
32
+33

�17
59
+22

�25
65
+28

�34
68
+26

�33

Total BBH mass M 150
+29

�17
154

+25

�16
170

+36

�23
169

+23

�20
154

+35

�16
181

+44

�27
179

+39

�25

Binary chirp massM 64
+13

�8
65
+11

�7
71
+15

�10
55
+14

�16
64
+15

�10
71
+16

�11
72
+16

�11

Mass-ratio q = m2/m1 0.79
+0.19

�0.29
0.73

+0.24

�0.29
0.74

+0.23

�0.42
0.23

+0.46

�0.14
0.61

+0.32

�0.36
0.63

+0.32

�0.46
0.66

+0.29

�0.46

Primary BH spin �1 0.69
+0.27

�0.62
0.65

+0.32

�0.57
0.80

+0.18

�0.58
0.84

+0.12

�0.46
0.67

+0.30

�0.59
0.86

+0.12

�0.56
0.84

+0.14

�0.56

Secondary BH spin �2 0.73
+0.24

�0.64
0.53

+0.42

�0.48
0.54

+0.41

�0.48
0.57

+0.32

�0.44
0.55

+0.4
�0.49

0.56
+0.39

�0.50
0.56

+0.39

�0.50

Primary BH spin tilt angle ✓LS 1
81
+64

�53
80
+64

�49
81
+49

�45
132

+17

�54
117

+44

�81
80
+54

�32
85
+52

�37

Secondary BH spin tilt angle ✓LS 2
85
+57

�55
88
+63

�58
93
+61

�60
84
+48

�44
82
+68

�57
97
+57

�64
97
+57

�63

E�ective inspiral spin parameter �e↵ 0.08
+0.27

�0.36
0.06

+0.31

�0.39
0.06

+0.34

�0.35
�0.46

+0.55

�0.14
�0.11

+0.43

�0.47
0.07

+0.32

�0.44
0.02

+0.36

�0.41

E�ective precession spin parameter �p 0.68
+0.25

�0.37
0.60

+0.33

�0.44
0.74

+0.21

�0.40
0.57

+0.19

�0.25
0.49

+0.34

�0.34
0.78

+0.17

�0.39
0.76

+0.19

�0.39

Remnant BH mass Mf (M�) 142
+28

�16
147

+23

�15
162

+35

�22
- 148

+35

�15
173

+46

�25
171

+28

�19

Remnant BH spin �f 0.72
+0.09

�0.12
0.72

+0.11

�0.15
0.74

+0.12

�0.14
- 0.63

+0.17

�0.24
0.75

+0.13

�0.18
0.72

+0.13

�0.14

Radiated energy Erad 7.6+2.2
�1.9 7.2+2.7

�2.2 7.8+2.8
�2.3 - 6.1+3.4

�3.3 7.2+3.1
�3.2 7.3+3.0

�3.1

Luminosity distance DL 5.3+2.4
�2.6 4.6+1.6

�1.6 4.0+2.0
�1.8 2.9+4.1

�1.4 3.5+2.4
�2.0 3.5+1.9

�1.7 3.4+2.0
�1.6

Source redshift z 0.82
+0.28

�0.34
0.73

+0.20

�0.22
0.64

+0.25

�0.26
0.33

+0.36

�0.15
0.59

+0.32

�0.3 0.58
+0.26

�0.25
0.56

+0.27

�0.23

show results for LALInference runs with IMRP�����THM
and IMRP�����XHM in Fig. 5. One can see that there is con-
sistency between IMRP�����XHM and IMRP�����THM
when the same set of modes is included, which implies dis-
abling the (3,2) mode in IMRP�����XHM and restricting to
`max = 4 in IMRP�����THM. We do observe larger di�er-

ences when including all the available modes in each model,
with a shift towards slightly lower q and mild multimodality in
the distance and inclination parameters for IMRP�����XHM,
although joint distributions still look broadly consistent with
IMRP�����THM. We also notice that the recovered mass ra-
tio and e�ective spins are consistent with the values reported



Conclusions

• We do expect systematic differences among different template families, due 
to specific modelling assumptions: need to understand better their extent and 
impact on PE (more injections, waveform comparison etc…)  

• Strong motivation to develop models incorporating more physics: e.g. 
eccentricity (see Toni’s talk) 

• Phenomenological models are under constant improvement: stay tuned!


