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Motivation

Better inclusion of glitch models in analyses.

Improve the classification of glitches and new
glitches.

Generate realistic populations of glitches for
large-scale studies.

Generate glitches in time domain with GANs




Data set

Simple morphology
We focus on blips and abundant
from L1 and H1, O2 o

Similar to other GWs

The noise will hinder our Machine Learning algorithm.
Can we separate the glitch from the noise?
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Example of a blip glitch (left) and a high mass BBH




Bayes Wave (BW) dilemma

Examples of bad reconstruction with BW

BW is based on wavelet transform

1) We select glitches with high confidence according to % # | “‘P | e e e
Gravity Spy (GS) classifier (ML-based). 7 |

2 ) We reconstruct the glitch with BW.

3) We check its quality with GS.

Strain

O In the process we lose more than 50% of the data.
O Even more data is lost for other types. | | |
o Still high frequency noise =2 use rROF for denoising ‘ | |

Torres-Forné, Phys. Rev. D, 2018

Time (s)




Instances

Confidence of input glitches for L1

800 -
700 -
600 -
500 -
400 -
300 -
200 -

100 -

O

BW: lgs = 0.892, 065 =0.131
BW + rROF: ugs = 0.874, 0gs = 0.151

0.2
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Confidence of Gravity Spy

1.0

Input blip glitches:
L1 example

We “denoise” them with rROF method.

"Light” denoising not to lose too much information.

GAN input: blips > 90% GS confidence.




Generative Adversarial Networks

Real images

Random input

Generator

Y

Sample

Sample

Critic

sSO|

anuo

AN

SSO|
Jojesauan)

Used to learn the underlying distribution of the data
Inspired by Game Theory: game with 2 networks
Use Wasserstein loss: critic till optimality

\ery unstable process

Penalize the network to stabilize it

Network employed: CT-GAN (Wel, [CLR 2018)




CT-GAN: GP + CT with Dropout

Some intuition from the experiments:

GP and CT loss for each training batch for L1 blips

o Gradient Penalty (GP): balances the loss of the ———
critic and generator “ -
"
o Consistency term (CT): regularizes the §
2
generator. -
1-
o Dropout: regularizes the critic, 1 D - |
0 10000 20000 30000 40000 50000

: Training batch t
Both terms tend to zero when the network is raining batches generator

stable. Note: the generator is trained 5000 times, while the critic 500

= s

< 7/




CT-GAN evolution through epochs for H1

o Generator improves quickly

o Non-smooth peaks come from input data

Normalized strain {-)
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CT-GAN evolution

Confidence obtained from Gravity Spy

measured by Wi %y 00uee. te%e.eterne. o
Gravity Spy in L1 0] SRR IR
§ 08 1
Every 10 epochs we generate g . .
a fake glitch and measure it S 07 o .
with Gravity Spy, to have an & .
extra measure of the ‘g 06 1 o
performance of the network, S
05 4
04 - ®
0 100 200 300 400 500
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Building a fake
population of
blips

Generation of 358 samples, < 1s.

The glitches are injected in background
noise and are normalized according to the
scale factor a.

Previously selected with GS label ‘Blip’.

dence GS

Conf

Use a to control ggp;
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Building a fake

CDF of GS confidence at SNR = 18.2 for L1

population of o |[= res et =
blips

o High GS confidence: good performance

o Low GS confidence: imperfect data

0.6 07
GS confidence




Bad fake glitch

Good fake glitch

Fake glitch

Fake glitch




Good fake

glitch




MF method with GW190521 and glitch templates

1 GW190521 GPS time
70 4| ® Maximum

Towards a

Signal-to-noise ratio

glitch bank: a
small MF test
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MF method with glitches and glitch templates
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)

)

)

)

)

)

We can generate blip glitches.
GANs need a lot of data, move to O3.

Constructing a blip bank (in progress)

BW reconstruction needs to be improved.

Generalize to other types of glitches.
Construct a full pipeline for glitch bank.

Thank you! Questions?
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