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•Science with LISA & data analysis challenges 
• Suppose we subtract loud sources, how do we 

characterize astrophysical GW foregrounds?  
• Is there can easy way to tell if a stochastic GW signal 

is detectable or not? (remember: no real data yet!) 
• Take first assumption back, go for the real thing. 

How do we find sources in a signal dominated 
observatory?
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M Hewitson, LPF Status, GWPAW, Cape Cod 2016

The measurement concept

• test-mass to test-
mass measurement 
is synthesised from: 
• test-mass to SC 
• SC to SC 
• SC to test-mass 

• Combine 6 links on 
ground 

• Time Delay 
Interferometry
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Science with LISA : Extracting the signals
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� *OUSPEVDUJPO

ćF HSPVOECSFBLJOH EJTDPWFSZ PG (SBWJUBUJPOBM 8BWFT
	(8T
 CZ HSPVOE�CBTFE MBTFS JOUFSGFSPNFUSJD EFUFD�
UPST JO ���� JT DIBOHJOH BTUSPOPNZ <�> CZ PQFOJOH
UIF IJHI�GSFRVFODZ HSBWJUBUJPOBM XBWF XJOEPX UP PC�
TFSWF MPX NBTT TPVSDFT BU MPX SFETIJę� ćF 4FOJPS
4VSWFZ $PNNJUUFF 	44$
 <�> TFMFDUFE UIF -� TDJFODF
UIFNF ćF (SBWJUBUJPOBM 6OJWFSTF <�> UP PQFO UIF ���
UP ���N)[ (SBWJUBUJPOBM 8BWF XJOEPX UP UIF 6OJ�
WFSTF� ćJT MPX�GSFRVFODZ XJOEPX JT SJDI JO B WBSJFUZ
PG TPVSDFT UIBU XJMM MFU VT TVSWFZ UIF 6OJWFSTF JO B OFX
BOE VOJRVF XBZ ZJFMEJOH OFX JOTJHIUT JO B CSPBE SBOHF
PG UIFNFT JO BTUSPQIZTJDT BOE DPTNPMPHZ BOE FOBCMJOH
VT JO QBSUJDVMBS UP TIFE MJHIU PO UXP LFZ RVFTUJPOT� 	�

)PX XIFO BOE XIFSF EP UIF ĕSTU NBTTJWF CMBDL IPMFT
GPSN HSPX BOE BTTFNCMF BOE XIBU JT UIF DPOOFDUJPO
XJUI HBMBYZ GPSNBUJPO 	�
 8IBU JT UIF OBUVSF PG HSBW�
JUZ OFBS UIF IPSJ[POT PG CMBDL IPMFT BOE PO DPTNPMPHJ�
DBM TDBMFT 
8F QSPQPTF UIF -*4" NJTTJPO JO PSEFS UP SFTQPOE UP
UIJT TDJFODF UIFNF JO UIF CSPBEFTU XBZ QPTTJCMF XJUIJO
UIF DPOTUSBJOFE CVEHFU BOE HJWFO TDIFEVMF� -*4" FO�
BCMFT UIF EFUFDUJPO PG (8T GSPN NBTTJWF CMBDL IPMF
DPBMFTDFODFT XJUIJO B WBTU DPTNJD WPMVNF FODPNQBTT�
JOH BMM BHFT GSPN DPTNJD EBXO UP UIF QSFTFOU BDSPTT
UIF FQPDIT PG UIF FBSMJFTU RVBTBST BOE PG UIF SJTF PG
HBMBYZ TUSVDUVSF� ćF NFSHFS�SJOHEPXO TJHOBM PG UIFTF
MPVE TPVSDFT FOBCMFT UFTUT PG &JOTUFJO�T (FOFSBM ćFPSZ
PG 3FMBUJWJUZ 	(3
 JO UIF EZOBNJDBM TFDUPS BOE TUSPOH�
ĕFME SFHJNF XJUI VOQSFDFEFOUFE QSFDJTJPO� -*4" XJMM
NBQ UIF TUSVDUVSF PG TQBDFUJNF BSPVOE UIF NBTTJWF
CMBDL IPMFT UIBU QPQVMBUF UIF DFOUSFT PG HBMBYJFT VTJOH
TUFMMBS DPNQBDU PCKFDUT BT UFTU QBSUJDMF�MJLF QSPCFT� ćF
TBNF TJHOBMT XJMM BMTP BMMPX VT UP QSPCF UIF QPQVMBUJPO
PG UIFTF NBTTJWF CMBDL IPMFT BT XFMM BT BOZ DPNQBDU PC�
KFDUT JO UIFJS WJDJOJUZ� " TUPDIBTUJD (8 CBDLHSPVOE PS
FYPUJD TPVSDFT NBZ QSPCF OFX QIZTJDT JO UIF FBSMZ 6OJ�
WFSTF� "EEFE UP UIJT MJTU PG TPVSDFT BSF UIF OFXMZ EJTDPW�
FSFE -*(0�7JSHP IFBWZ TUFMMBS�PSJHJO CMBDL IPMF NFSH�
FST XIJDIXJMM FNJU(8T JO UIF -*4"CBOE GSPN TFWFSBM
ZFBST VQ UP B XFFL QSJPS UP UIFJS NFSHFS FOBCMJOH DPPS�
EJOBUFE PCTFSWBUJPOT XJUI HSPVOE�CBTFE JOUFSGFSPNF�
UFST BOE FMFDUSPNBHOFUJD UFMFTDPQFT� ćF WBTU NBKPSJUZ
PG TJHOBMT XJMM DPNF GSPN DPNQBDU HBMBDUJD CJOBSZ TZT�
UFNT XIJDI BMMPX VT UP NBQ UIFJS EJTUSJCVUJPO JO UIF
.JMLZ 8BZ BOE JMMVNJOBUF TUFMMBS BOE CJOBSZ FWPMVUJPO�
-*4" CVJMET PO UIF TVDDFTT PG -*4" 1BUIĕOEFS
	-1'
 <�> UXFOUZ ZFBST PG UFDIOPMPHZ EFWFMPQNFOU
BOE UIF (SBWJUBUJPOBM 0CTFSWBUPSZ "EWJTPSZ 5FBN
	(0"5
 SFDPNNFOEBUJPOT� -*4" XJMM VTF UISFF BSNT

BOE UISFF JEFOUJDBM TQBDFDSBę 	4�$
 JO B USJBOHVMBS GPS�
NBUJPO JO B IFMJPDFOUSJD PSCJU USBJMJOH UIF &BSUI CZ
BCPVU ��○� ćF FYQFDUFE TFOTJUJWJUZ BOE TPNF QPUFO�
UJBM TJHOBMT BSF TIPXO JO 'JHVSF ��

'JHVSF �� &YBNQMFT PG (8 TPVSDFT JO UIF GSF�
RVFODZ SBOHF PG -*4" DPNQBSFE XJUI JUT TFOTJ�
UJWJUZ GPS B ��BSNDPOĕHVSBUJPO� ćFEBUB BSF QMPU�
UFE JO UFSNT PG EJNFOTJPOMFTT ADIBSBDUFSJTUJD TUSBJO
BNQMJUVEF� <�>� ćF USBDLT PG UISFF FRVBMNBTT CMBDL
IPMF CJOBSJFT MPDBUFE BU z = 3 XJUI UPUBM JOUSJO�
TJD NBTTFT 107 106 BOE 105M⊙ BSF TIPXO� ćF
TPVSDF GSFRVFODZ 	BOE 4/3
 JODSFBTFT XJUI UJNF
BOE UIF SFNBJOJOH UJNF CFGPSF UIF QMVOHF JT JOEJ�
DBUFE PO UIF USBDLT� ćF � TJNVMUBOFPVTMZ FWPMW�
JOH IBSNPOJDT PG BO &YUSFNF .BTT 3BUJP *OTQJSBM
TPVSDF BU z = 1.2 BSF BMTP TIPXO BT BSF UIF USBDLT PG
B OVNCFS PG TUFMMBS PSJHJO CMBDL IPMF CJOBSJFT PG UIF
UZQF EJTDPWFSFE CZ -*(0� 4FWFSBM UIPVTBOE HBMBD�
UJD CJOBSJFT XJMM CF SFTPMWFE BęFS B ZFBS PG PCTFS�
WBUJPO� 4PNF CJOBSZ TZTUFNT BSF BMSFBEZ LOPXO
BOE XJMM TFSWF BT WFSJĕDBUJPO TJHOBMT� .JMMJPOT PG
PUIFS CJOBSJFT SFTVMU JO B ADPOGVTJPO TJHOBM� XJUI B
EFUFDUFE BNQMJUVEF UIBU JT NPEVMBUFE CZ UIF NP�
UJPO PG UIF DPOTUFMMBUJPO PWFS UIF ZFBS� UIF BWFSBHF
MFWFM JT SFQSFTFOUFE BT UIF HSFZ TIBEFE BSFB�

"O PCTFSWBUPSZ UIBU DBO EFMJWFS UIJT TDJFODF JT EF�
TDSJCFE CZ B TFOTJUJWJUZ DVSWF XIJDI CFMPX �N)[ XJMM
CF MJNJUFE CZ BDDFMFSBUJPO OPJTF BU UIF MFWFM EFNPO�
TUSBUFE CZ -1'� *OUFSGFSPNFUSZ OPJTF EPNJOBUFT BCPWF
�N)[ XJUI SPVHIMZ FRVBM BMMPDBUJPOT GPS QIPUPO TIPU
OPJTF BOE UFDIOJDBM OPJTF TPVSDFT� 4VDI B TFOTJUJWJUZ
DBO CF BDIJFWFE XJUI B ���NJMMJPO LN BSN�MFOHUI DPO�
TUFMMBUJPO XJUI �� DN UFMFTDPQFT BOE �8 MBTFS TZTUFNT�
ćJT JT DPOTJTUFOU XJUI UIF (0"5 SFDPNNFOEBUJPOT
BOE CBTFE PO UFDIOJDBM SFBEJOFTT BMPOF B MBVODINJHIU
CF GFBTJCMF BSPVOE ����� 8F QSPQPTF BNJTTJPO MJGFUJNF
PG � ZFBST FYUFOEBCMF UP �� ZFBST GPS -*4"�

1BHF � -*4" o �� */530%6$5*0/
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• Now, let us ignore the loud and relatively short GW signals. 
• Suppose we build an effective pipeline that allows us to find 

them, and subtract them, almost perfectly.  
• What is the remaining signal? 

• Astrophysical  
• Cosmological
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them, and subtract them, almost perfectly.  
• What is the remaining signal? 
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• Some seeds might generate a stochastic “pop-corn”-like noisy 
signal! [D. Langeroodi, NK, et al, in preparation]

•Black Hole Binaries

Preliminary
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• Lighter LIGO-like binaries. 
• Stellar Masses. 
• Maybe detectable with lower SNR. 
• Will generate a stochastic signal in 

the LISA band. 
• Work on an accurate extrapolation 

of the LIGO population to the 
LISA band is under study. 
[P. Marcoccia, et al, in prep.] 

•Black Hole Binaries
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• Ultra-compact (White Dwarf) 
binaries in our neighborhood. 

• Stellar-mass compact objects 
with orbital periods < 1 h.   

• Almost monochromatic. 
• Millions of sources measured in 

the LISA band. 
• Guaranteed detection!   

 
 

•Compact Galactic Binaries
2

2. GRAVITATIONAL-WAVE SURVEY OF ULTRA-COMPACT BINARIES

Figure 1. Sensitivity plot for LISA assuming 4 years
of observation showing the binaries which reach a
SNR ⇠ 5. Gray points are a simulated population,
green circles are AM CVn systems, orange circles corre-
spond to detached white dwarfs and the purple circles
are the hot subdwarf binaries. Adapted from Kupfer
et al. (2018)

Compared to compact object

merger events, the orbital velocities,

vorb, of the stars in mHz-band bi-

naries are significantly less than the

speed of light, c. As a result, the

gravitational waveforms are com-

paratively simple to model. A sub-

set of systems will also have a clearly

measurable first time derivative of

the frequency ḟ and, after several

years of observing, a small number

of sources will also have a detectable

second time derivative of the fre-

quency f̈ . Because UCBs are con-

tinuous GW sources, the signal-to-

noise ratio (SNR) will improve over

the observation time as
p
T . Po-

sition and orientation information

for the binaries comes from modu-

lations imparted on the GW signal

from the orbital motion of the detec-

tor, and long-duration observations

enable monitoring of the frequency evolution of the binaries, which encodes valuable physics

(e.g. relativistic e↵ects on the orbital motion, internal structure of WD stars, and mass

transfer physics; see, for example Taam et al. 1980; Savonije et al. 1986; Willems et al. 2008;

Nelemans et al. 2010). The combination of EM+GW measurements, then, will enable very

sensitive tests of models for the evolution, mass transfer, and accretion in these systems.

About 104 individually resolvable UCBs are expected to be detected in the first year of a

LISA-like mission (Cornish & Robson 2017). Population inferences made from the catalog of

UCBs, such as the frequency and ḟ distributions, will provide statistically robust insight into

the complicated astrophysical processes undergone by binary stars, including the formation

of the compact objects themselves, common envelope evolution, mass transfer, and the end

state of these systems, perhaps as Type Ia supernovae, AM CVn systems, massive WDs, or

subdwarf-O and R Corona Borealis stars (Webbink 1984). These same physical processes

are at play to understand the formation channels of other compact binaries, including X-

ray binaries (e.g., van Haaften et al. 2012) and the neutron star/black hole binary mergers

observed by ground-based GW observatories (e.g., Stevenson et al. 2015). Space-based GW

observations will provide a long lever-arm on binary population synthesis models thanks to

the enormous number of sources.

arXiv:1903.05583
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• Ultra-compact (White Dwarf) 
binaries in our neighborhood. 

• Stellar-mass compact objects 
with orbital periods < 1 h.   

• Almost monochromatic. 
• Millions of sources measured in 

the LISA band. 
• Guaranteed detection!   
• Source of non-stationarity in the 

data-steam!  

•Compact Galactic Binaries

PhysRevD.71.122003

See next talk by Ivan M. Vilchez! 
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• How do we analyze data with such particularities? 
• We need to perform model selection and Parameter Estimation. 
• For many types and high number of sources we may use stochastic 

algorithms (MCMC on steroids).  
• Expensive (computationally), challenging to tune, takes time. 
• We will discuss this in a bit. 

• But for now, keeping things a little simple, how can we make estimates 
of the unresolved signal that originates from a population of binaries?



N. Karnesis, LISA: Detecting signals in the noise, IGWM - 2021/06/09

•Parenthesis: Estimating the total signal from unresolved binaries 

• A practical method to get a zero-eth order of the foreground signals. 
• Iterative process, based on more “loose” criteria about the detection 

of each source, i.e. a SNR limit.  
• For example, we define a SNR0, for which if a given source surpasses it, 

then we subtract it. Basically loop over the known catalogue. 

NK et al, arXiv:2103.14598
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• A practical method to get a zero-eth order of the foreground signals. 
• Iterative process, based on more “loose” criteria about the detection 

of each source, i.e. a SNR limit.  
• For example, we define a SNR0, for which if a given source surpasses it, 

then we subtract it. Basically loop over the known catalogue. 
• Fast 
• Generic 
• Idealized: no source overlap problem. 
• Idealized: perfect subtraction == perfect residuals. 
• Idealized: Noise.

•Parenthesis: Estimating the total signal from unresolved binaries 

NK et al, arXiv:2103.14598
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•In more details:
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•Combining more than one binary population! 
• This method is generic enough to allow us to combine any given 
population of sources, of any type.  

Galactic binaries sobbhs
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• M Georgousi, NK, V. Korol and M. Pieroni. 
• Study the Galaxy properties by investigating the unresolved signal 

properties as measured by LISA. 

•Example of application

 
Toonen et al. 2012, 2017; 
Korol et al. 2017  
Korol et al. (inc.) NK 2021 in prep  
NK et al, arXiv:2103.14598

Preliminary
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• Now, let us ignore the loud and relatively short GW signals. 
• Suppose we build an effective pipeline that allows us to find 

them, and subtract them, almost perfectly.  
• What is the remaining signal? 

• Astrophysical  
• Cosmological
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• Different mechanisms of the early Universe could produce a stochastic GW 
background measured by LISA. 

• We need to extract it from the data - dig in the residuals!

•Stochastic signals from cosmological sources

4

waves on the CMB is under hot pursuit. Given the current bounds on such a background,
from the upper limit on CMB B-mode polarization [41], we extrapolate the predictions of
slow roll inflation to the mHz band. As shown in the figure, this spectrum is hopelessly
far below the sensitivity of LISA. However, intriguing inflationary scenarios, based on new
ideas about symmetry breaking, predict blue-tilted spectra [42–45]. The maximum blue-
tilted spectrum, illustrated in Fig. 2, will be within range of LISA [39, 40]. Detection of
such a signal would be a profound discovery, revealing the origin of the large-scale structure
of the Universe and the particle physics that gave rise to the primordial fireball.

A broken spectrum of GWs, peaked near mHz frequencies, is the signature of an
electroweak-scale phase transition. In such a scenario, the physical vacuum once had a
significantly higher free energy that is liberated in a phase transition to a final, true vacuum
and eventually converted into thermal energy of radiation and hot plasma [49–51]. Such a
phase transition could play a key role in determining the prevalence of matter over antimat-
ter in the Universe. The potential for a space-based GW observatory to detect the SGWB
produced by a strongly first-order cosmological phase transition is a subject of intense study
[46]. The stochastic background depends on a broad range of physics, including the col-

Figure 2: Gravitational Wave Cosmology: The sensitivity of LISA to a stochastic background is
shown, relative to other observatories and methods. The dashed red and blue curves show the
prediction of a standard inflationary model and the maximum blue-tilted spectrum. The long-
dashed green curve is an example of the spectrum from a strongly first-order electroweak phase
transition (case 1 from Ref. [46]). Black and gray curves show current and future sensitivity. The
LIGO and Virgo curves show the sensitivity level at the time of the first detections of GWs; aLIGO
shows the projected sensitivity of the advanced LIGO design; PTA shows the Pulsar Timing Array
sensitivity; SKA shows the projected sensitivity by the Square Kilometer Array [47]; CMB shows
the bound r < 0.1 (95% C.L.) via B mode polarization, whereas the lower, gray curve shows
a projected sensitivity r < 0.001 for future CMB experiments; Indirect is based on Big Bang
Nucleosynthesis and CMB sensitivity to additional light degrees of freedom. Figure adapted from
Ref. [48].
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• Again, take a step back, and ask: 
• If we assume we subtract loud sources successfully, 
• how good is LISA in detecting weak stochastic GW signals (both cosmo + astro)? 

•Stochastic signals from cosmological sources

R Flauger et al, arXiv: 2009.11845
Figure 8: Reconstruction of the bump signal described in section 4.3 in the AET channels

using 60 initial bins, which converged to 7. In the zoomed regions we can see how the

reconstruction accommodates the injected signal within the 1-� band.

Figure 9 clearly illustrates this aspect. It considers the (peculiar but didactic) scenario in

which in a given channel, say X, the sum of the injected signal and noise matches the

noise curve with some acceleration and interferometry-metrology-system parameters larger

than the nominal ones. Had we exclusively analysed the XX data, the separation between

the signal and the noise would have been completely dependent on our prior on the noise

parameters. In addition, despite the huge SNR (calculated with respect to the nominal

sensitivity curve), the errors on the parameters would have been large. On the contrary,

thanks to the di↵erence between response functions in the di↵erent channel combinations of

the AET basis, no signal can be fully degenerate with the noise curve in every channel. The

three-channel analysis exploits this feature, and, as can be seen in fig. 9, the degeneracy is

broken and the reconstruction is reasonably satisfactory.

4.5 Comparison with and without final MC sampling step

As explained in section 3.2, in this work we implement a full-posterior MC as a final step of

the algorithm, once the number of bins has been fixed. We expect this step to produce more

accurate uncertainty bands for the reconstruction, since, contrary to the main algorithm,

it fits to all bins a common noise model.

In practice, we found the e↵ect of the per-bin fit of the noise model to a↵ect the

reconstruction uncertainties only mildly, at least for moderately high signal-to-noise SGWB

shapes (the only ones for which a spectrum reconstruction is expected to produce significant

results versus a simple model fit). This is possibly due to the null e↵ect of the noise in

the central, high signal-to-noise bins, and to the expected lack of correlation between the

left- and rightmost bins, where the noise is the dominant contribution, since the noise in

each of these outer bins is a↵ected by only one of the noise parameters: A for the leftmost,

low-frequency one, and P for the rightmost, high-frequency one. As en example, in fig. 10

– 19 –
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• Again, take a step back, and ask: 
• If we assume we subtract loud sources successfully, 
• how good is LISA in detecting weak stochastic GW signals (both cosmo + astro)? 

• Normally, one would have to run simulations with different noise realizations, 
different signals, or perform a Fisher Matrix analysis …  

• But there is another way to go forward, assuming again idealized conditions. 

•Stochastic signals from cosmological sources
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• Again, take a step back, and ask: 
• If we assume we subtract loud sources successfully, 
• how good is LISA in detecting weak stochastic GW signals (both cosmo + astro)? 

• We can make analytical predictions, if we start with computing the power spectra 
 
 

• Where St is the theoretical power spectrum we are interested in. Then if we assume 
 

• and that we have a prior knowledge of Sn around ε, we can try to marginalize it out,  
and then 

•Stochastic signals from cosmological sources

Assessing the detectability of a SGWB with LISA 5

average them in frequency so that, in each bin i,

p(D[i]|St) =
e
�

PN

j=1
Dj [i]

St[i]

St[i]N
=

e
�N D[i]

St[i]

St[i]N
, (2)

where D[i] is the average of the N periodograms of the time series data in frequency

bin i. Now, we can assume that the theoretical power St[i] is the sum of the true signal

plus the instrumental noise :

St[i] = So[i] + Sn[i], (3)

with Sn[i] the instrumental noise, and So the excess power measured for each frequency

f [i].

Let us also introduce an uncertainty in the noise amplitude by assigning a prior

probability on the power spectrum level Sn[i] per frequency bin i. We choose to use a

uniform prior in each bin. This will also allow us to compute the integrals that follow

analytically. Defining the uncertainty in the noise amplitude by parameter ✏[i], the

instrument noise power spectrum lies in the range [Sn[i]� ✏[i], Sn[i] + ✏[i]], where Sn[i]

is a best estimate, for each frequency f [i]. A step further would be to generalise to an

asymmetric range around Sn[i], which would then lead to [Sn[i] � ✏
�[i], Sn[i] + ✏

+[i]].

Marginalizing over Sn, the resulting PDF for each frequency bin is now

p(So|D,Sn) =
1

(✏+ + ✏�)

Z S̄n+✏+

S̄n�✏�

e
�N D

So+Sn

(So + Sn)
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where we have dropped the [i] indices, for the sake of notational simplicity. After a

change of variable, we can use the incomplete gamma function �t(x) =
R1
x y

t�1
e
ydy in

eq. (4). Then, the posterior PDF for the signal power So[i] for each frequency f [i] can

be expressed as

p(So|D,Sn) = C

⇣
�N�1

⇣
A

+
⌘
� �N�1

⇣
A

�
⌘⌘

, (5)

with

A
± =

ND

Sn + So ± ✏±
and C =

1

(✏+ + ✏�)
⇣
ND

⌘N�1 . (6)

Eq. (5) is an analytic expression of the underlying stochastic signal for each frequency

f [i], given an uncertainty ✏[i] of the instrumental noise. As we will see later in section

(2.2), it can be applied to simplified synthetic data to retrieve a first estimate of the

properties of the signal.

For completeness, let us now briefly discuss the dependence of Sn on a set of

parameters ~✓n. In this study, our simple noise model is a function of the test mass

position and acceleration noise levels. Prior information on these parameters can be

directly drawn from the main results of the LPF mission [27, 28]. In addition, it is

expected that a first estimate of ~✓n from the onboard calibration measurements of the

instrument will be obtained during the commissioning phase of the LISA mission. We

can again assume that their prior densities follow ~✓n ⇠ U [~✓min
n , ~✓

max
n ]. Consequently, the
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p(So|D,Sn) =
1

(✏+ + ✏�)

Z S̄n+✏+

S̄n�✏�

e
�N D

So+Sn

(So + Sn)
N dSn. (4)

where we have dropped the [i] indices, for the sake of notational simplicity. After a

change of variable, we can use the incomplete gamma function �t(x) =
R1
x y

t�1
e
ydy in

eq. (4). Then, the posterior PDF for the signal power So[i] for each frequency f [i] can

be expressed as

p(So|D,Sn) = C

⇣
�N�1

⇣
A

+
⌘
� �N�1

⇣
A

�
⌘⌘

, (5)

with

A
± =

ND

Sn + So ± ✏±
and C =

1

(✏+ + ✏�)
⇣
ND

⌘N�1 . (6)

Eq. (5) is an analytic expression of the underlying stochastic signal for each frequency

f [i], given an uncertainty ✏[i] of the instrumental noise. As we will see later in section

(2.2), it can be applied to simplified synthetic data to retrieve a first estimate of the

properties of the signal.

For completeness, let us now briefly discuss the dependence of Sn on a set of

parameters ~✓n. In this study, our simple noise model is a function of the test mass

position and acceleration noise levels. Prior information on these parameters can be

directly drawn from the main results of the LPF mission [27, 28]. In addition, it is

expected that a first estimate of ~✓n from the onboard calibration measurements of the

instrument will be obtained during the commissioning phase of the LISA mission. We

can again assume that their prior densities follow ~✓n ⇠ U [~✓min
n , ~✓

max
n ]. Consequently, the
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isotropic SGWB signal, given a certain level of confidence on the characteristics of

the instrumental noise. However, it should be stressed that this methodology is built

upon the assumption of ideal, Gaussian, stationary, and non-interrupted data, and is

applied as proof-of-principle to simplified data sets that are free from “loud” transient

signals. This being said, this approach can in fact be applied to more complicated cases,

provided that the necessary statistical models of signal contaminations are considered

in the analysis.

In section 2 we discuss the theoretical approach used to model the power excess in

the signal for each frequency bin. The calculations presented in our work apply to an

idealised LISA scenario, where the displacement noise (Si) and the acceleration noise

(Sa) are equal for all test-masses. This fact alone greatly simplifies the calculations, and

allows us to derive analytic expressions for the signal detection statistics. In section 2.2

we apply our approach to the Radler [30] LISA Data Challenge (LDC) data set, as

a simplified test case, but the application of our methodology to more complicated

scenarios is also discussed. We then describe the detectability of a stochastic background

as a function of its amplitude and the uncertainty on the noise power spectrum amplitude

in section 3, by deriving an analytic expression for the Bayes factor. Finally, in section 4

we summarise our main results and elaborate on the possible applications of this

technique.

2. Probability of power excess and application to synthetic test data

2.1. Theoretical Background

Let us introduce the single channel data time series d(t), which in our case is the

time series of a single channel after applying the Time Delayed Interferometer (TDI) [16]

algorithms. Then, and if we assume Gaussian and zero mean noise sources [31, 32], the

real and imaginary parts of the Fourier transform of the data d̃ at each Fourier coe�cient

with index i, are also independent Gaussian variables. In this case, the joint conditional

probability density function for the power spectrum of the data, normalized by the

corresponding theoretical power spectrum, follows a �
2
k distribution with k = 2 degrees

of freedom [33, 34]. This means that if we call Sd the numerically computed power

spectrum of the data, and St their theoretical, or “true” PSD, then 2Sd/St ⇠ �
2
2. From

that relation, we can derive that

p(Sd|St) =
Y

i

1

St[i]
exp

 

�Sd[i]

St[i]

!

, (1)

where Sd[i] is taken at frequency f [i], and where St[i] is the model power spectrum at

frequency f [i], which, in the absence of spurious signals and other noises is the sum of

a stochastic signal and the instrument noise. Finally, i is the index running across the

frequency grid. Under these ideal circumstances, we can safely split the data d(t) in N

segments dj, compute the corresponding power spectrum Dj for each segment j, and
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• In a Bayesian framework we proceed  by calculating the Bayes Factor between the 
• M1: Instrumental noise + SGWB signal 
• M0: Instrumental noise only 

• Since we have nice closed forms of the posteriors, we marginalize so  that: 
 
                                                                    with  
 
 

• Get BF(f) for a given spectrum model, without carrying about shapes, MCs, etc!

•Stochastic signals from cosmological sources
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investigation under study. One of the main reasons we choose a uniform prior, is that

it enables us to carry out a relatively simple analytic derivation of the evidence. Then,

once more dropping index [i] for the sake of clarity, we write the evidence for model M1

per frequency f [i] as

p(D|M1) = C

Z Sn+✏+

Sn�✏�

Z 

0

e
� ND

So+Sn

(So + Sn)
N dSodSn, (11)

with C a constant. Similarly, for the noise-only case M0 we get

P (D|M0) = C
0
Z Sn+✏+

Sn�✏�

e
�ND

Sn

SN
n

dSn . (12)

Taking their ratio yields a Bayes factor that depends on the uncertainty ✏ of the power

spectral density of the instrument noise Sn, and on the quantities D and N that are

constant, and depend on the spectral preprocessing of the time series data. The Bayes

factor is simply

B10(✏) =
P (D|M1)

P (D|M0)
. (13)

To proceed with the calculation we first define ↵± = Sn± ✏
± and �

± = Sn± ✏
±+. For

the sake of convenience, we also define the following useful quantities :

�↵±
= �N�2

⇣
ND/↵

±
⌘
, (14)

��±
= �N�2

⇣
ND/�

±
⌘
. (15)

Then, if we calculate eq. (13), from eq. (12) and (11), and by taking into account that

�n(x) = (n� 1)�n�1(x), we obtain

B10(✏) =
DN

⇣
�↵� � ��� � �↵+

+ ��+
⌘

(N � 2) (�↵� � �↵+)

+

⇣
�
���� � ↵

��↵�
+ ↵

+�↵+ � �
+��+

⌘

 (�↵� � �↵+)
, (16)

where again we have omitted the [i] indices for the sake of clarity. The above expression

holds for each frequency f [i], and provides an estimate of the Bayes Factor between the

two models of interest at f [i]. Eq. (16) can be therefore be used to assess the detectability

of a stochastic gravitational wave signal as a function of the level of uncertainty in the

noise spectrum on the given grid of frequencies for the particular data set D. In the

following sections, we find that the SD density ratio yields results identical to eq. (16).

This provides cross-validation for eq. (16), and also demonstrates that the SD density

ratio approximation to the Bayes Factor can be used as well.

In Section 3.1, we apply our findings to the Radler data set, and in 3.2 we will

use it to introduce a model-independent framework that will allow us to assess the

detectability of isotropic stochastic GW signals.
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two models of interest at f [i]. Eq. (16) can be therefore be used to assess the detectability

of a stochastic gravitational wave signal as a function of the level of uncertainty in the

noise spectrum on the given grid of frequencies for the particular data set D. In the

following sections, we find that the SD density ratio yields results identical to eq. (16).

This provides cross-validation for eq. (16), and also demonstrates that the SD density

ratio approximation to the Bayes Factor can be used as well.

In Section 3.1, we apply our findings to the Radler data set, and in 3.2 we will

use it to introduce a model-independent framework that will allow us to assess the

detectability of isotropic stochastic GW signals.
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Then, what is left is to plot for example the BF > 100 
(strong evidence==detection) for different values of ε. 

•Stochastic signals from cosmological sources

NK et al, arXiv:1906.09027
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Or plot signals with  BF > 100 for different mission 
durations. Study was done for the LSG to study  effects 
of duty. cycle to science.
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• This means that there is going to be signals overlapping in time and frequency. 
• At the same time, given different population synthesis models, we expect contributions that would yield a confusion signal in certain 

frequency bands (.i.e the GBs case).  
• How to deal with them (analyze them)? 

Taken from https://lisa-ldc.lal.in2p3.fr/challenge2
See next talk by Ivan M. Vilchez! 
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FIG. 13. The UCB search as one component of a global
fit. The residuals from each source analysis block are passed
along to the next analysis in a sequence of Gibbs updates.
New data is incorporated into the fit during the mission. The
noise model and instrument models are updated on a regular
basis.

We will extend the waveform model to allow for more
complicated signals including eccentric white dwarf bina-
ries, hierarchical systems and stellar mass binary black
holes which are the progenitors of the merging systems
observed by ground-based interferometers [57], and de-
velop infrastructure to jointly analyze multimessenger
sources simultaneously observable by both LISA and EM
observatories [1, 13, 14, 18].
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• Many types of sources 
• We have models and waveforms, 

but the problem is that the total 
number of sources is unknown. 

• Search for them in the noisy data, 
a noise which will contain 
unresolvable confusion GW 
signals. 

• Tackle the issue with a “Global fit” 
scheme.
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LISAπ

• 10/2021 - 09/2023 
• LISA Group @ Aristotle University of 

Thessaloniki 
• Collaboration with M. Katz & N. Korsakova 
• Full members of the LISA Consortium:  

Nikolaos Stergioulas, George Pappas, 
Nikolaos Karnesis, Lazaros Souvaitzis  

• Diploma student: Mary Georgousi
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•We base our analysis on Markov Chain Monte Carlo methods. 
• Suppose we want to do parameter estimation and search. 
• We define a likelihood function
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•We base our analysis on Markov Chain Monte Carlo methods. 
• Suppose we want to do parameter estimation and search. 
• We define a likelihood function 
• The surface can be “bumpy”, and we need to explore the parameter 

space. 
• MCMC: Start from a point. 
• Propose a new based on a 

proposal distribution. 
• Accept it based on a probability.

Taken from https://blog.stata.com/
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• What happens if we do not know how many sources are there? More 
dimensions. 
• Now we have to move across models! 
• Occam's Razor: Simpler models that  

explain the observations are always  
preferred! 

• Challenging to tune. 
• This is where the LISAπ proposes novel 

solutions. 
• Employ improvements that will  

allow smooth dimension  
transitions and efficient sampling.  

parameter space

po
st
er
io
r
de
n
si
ty
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•Novel ideas tested with LISAπ : Adaptive Parallel Tempering
po

st
er
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T=low

T=high
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•A simple example / illustration 
• Assume a mixture of Gaussian and Cauchy. 
• Run in order to decide the dimensionality and the component types!
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•Output example

Preliminary



N. Karnesis, LISA: Detecting signals in the noise, IGWM - 2021/06/09

Preliminary



N. Karnesis, LISA: Detecting signals in the noise, IGWM - 2021/06/09

•Plans for LISAπ  
• With N Korsakova (SYRTE) 

• Make use of NNs : build efficient proposal distributions. 
• With M. Katz (AEI Potsdam) 

• GPU acceleration : efficiency + prototyping  
• Part of the analysis of the second LISA Data Challenge (LDC2): 

• Collaboration of AEI, AUTh, APC, UBirmingham, Caltech. 
• Analyze the data with a single pipeline.
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•Maybe a few words on the LISA Data Challenges: 
• A common language for the LISA community. 
• Share ideas, codes, methods. 
• Prototyping 
• Test realistic scenarios. 

• Both from instrument and nature point of view. 

• LDC1: Radler is already completed - publication will follow.  
• LDC2: Sangria is under way (+ Yorsh + Spritz) 

https://lisa-ldc.lal.in2p3.fr/

See next talk by Ivan M. Vilchez! 
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•Searching for signals in LISA, requires to look for all types of 
sources simultaneously, model the noise, repeat as data comes 
to ground.  

•Test ideas like the Global Fit.  
•Test algorithm ideas (MCMCs, Nested Sampling, ML, … ) 
•With the LDCs we focus on answering some of these questions. 
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Έξτρα Ματέριαλ
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• Again, take a step back, and ask: 
• If we assume we subtract loud sources successfully, 
• how good is LISA in detecting weak stochastic GW signals (both cosmo + astro)? 

• We can make analytical predictions, if we start with computing the power spectra 
 
 

• Where Sm is the theoretical power spectrum we are interested in. Then if we assume 
 

• and that we have a prior knowledge of Sn around ε, we can try to marginalize it out,  
and then 

•Stochastic signals from cosmological sources
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average them in frequency so that, in each bin i,
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where D[i] is the average of the N periodograms of the time series data in frequency

bin i. Now, we can assume that the theoretical power St[i] is the sum of the true signal

plus the instrumental noise :

St[i] = So[i] + Sn[i], (3)

with Sn[i] the instrumental noise, and So the excess power measured for each frequency

f [i].

Let us also introduce an uncertainty in the noise amplitude by assigning a prior

probability on the power spectrum level Sn[i] per frequency bin i. We choose to use a

uniform prior in each bin. This will also allow us to compute the integrals that follow

analytically. Defining the uncertainty in the noise amplitude by parameter ✏[i], the

instrument noise power spectrum lies in the range [Sn[i]� ✏[i], Sn[i] + ✏[i]], where Sn[i]

is a best estimate, for each frequency f [i]. A step further would be to generalise to an

asymmetric range around Sn[i], which would then lead to [Sn[i] � ✏
�[i], Sn[i] + ✏

+[i]].

Marginalizing over Sn, the resulting PDF for each frequency bin is now
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where we have dropped the [i] indices, for the sake of notational simplicity. After a

change of variable, we can use the incomplete gamma function �t(x) =
R1
x y
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eq. (4). Then, the posterior PDF for the signal power So[i] for each frequency f [i] can

be expressed as
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Eq. (5) is an analytic expression of the underlying stochastic signal for each frequency

f [i], given an uncertainty ✏[i] of the instrumental noise. As we will see later in section

(2.2), it can be applied to simplified synthetic data to retrieve a first estimate of the

properties of the signal.

For completeness, let us now briefly discuss the dependence of Sn on a set of

parameters ~✓n. In this study, our simple noise model is a function of the test mass

position and acceleration noise levels. Prior information on these parameters can be

directly drawn from the main results of the LPF mission [27, 28]. In addition, it is

expected that a first estimate of ~✓n from the onboard calibration measurements of the

instrument will be obtained during the commissioning phase of the LISA mission. We

can again assume that their prior densities follow ~✓n ⇠ U [~✓min
n , ~✓

max
n ]. Consequently, the
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