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Using spectrogram data:

●  Train a classifier capable of distinguishing between binary black hole signals 
and detector noise

● Train a network capable of performing parameter estimation on BBH signal 
data

Goals
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Why spectrograms?
● “Chirp” signature is a notable 

characteristic of GW signals from 
binary mergers

● High information density
● Computer Vision is a widely studied 

field with a plethora of well-developed 
tools

● We can use RGB spectrograms:
○ Hanford data -> Red

○ Livingston data -> Green

○ Virgo data -> Blue
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1 - Classifier
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Building a network that can identify the presence of a GW signal through a 
spectrogram input



● Capable of state of the art results in 
standard classification tasks

● Good balance between performance 
and training time

● Avoids gradient vanishing/exploding 
during training

● Deeper versions of a residual network 
should provide, at least, equal 
performance to shallower versions

Choosing an architecture - Residual 
Networks

5The CNN was implemented using fastai
www.fast.ai, arXiv:2002.04688 [cs.LG]

http://www.fast.ai
https://arxiv.org/abs/2002.04688


What we found
We created datasets for signals generated at 100, 400, 1000, 1500 and 2000 Mpc, using pyCBC to 

BBH signals with randomly sampled masses (m
1

, m
2

)∈[5, 100]M⨀ (Used the SEOBNRv4_ROM 

approximant)

We trained a model on each of these datasets, then tested their performance on the other datasets.

✓ A network can be trained so that large amplitude signals can be detected

✓ A network can be trained so that small amplitude signals can be detected

✓ A network trained on small amplitude signals is able to detect larger amplitude signals

✗ A network trained on large amplitude signals is NOT able to detect smaller amplitude signals

Take home message: we can train on smaller amplitudes and retain 
the ability to detect large amplitude signals
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1 detector vs 3 detector performance
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1 detector vs 3 detector performance
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ResNet trained on 2Gpc data from 3 
detectors 
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Performance of multiple-detector ResNet on 
O2 data
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Performance of multiple-detector ResNet on 
O3 data
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2 - Regression
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Building a network that can utilize spectrogram data to perform parameter 
estimation on binary coalescence GW signals



Reasonable targets
● The linear GR approximation for the waveform of a compact binary coalescence 

in the detector frame is of the form: 

so 𝓜, d
L
 are immediately good candidates for regression.

● We also include the effective inspiral spin χ
eff

, as spin-orbit effects emerge at 
higher order terms

● The sky position can also be looked at (though this takes some extra care)
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Deep Regression
● Base architecture: xResNet18 

○ Mish activation
○ MaxBlurPool (improves shift invariance)

○ Dropout layers are used before pooling layers to simulate a gaussian process. This turns the network into a 
bayesian CNN, placing a distribution over the network’s kernels.

● We use the SEOBNRv4HM_ROM approximant to generate our dataset
● Training set characterization:

○ m
1

 and m
2

 are randomly sampled between 5 and 100 solar masses
○ Distance is randomly sampled between 0.1 and 4 Gpc
○ The inclination is randomly sampled between 0 and π
○ Sky position and polarization are randomly sampled
○ Spin is sampled between [-1, 1] for each black hole, aligned with the orbital axis
○ We restrict the dataset elements to have an SNR>5
○ 31499 items

● Outputs: [d
L
, NAP, 𝓜, χ

eff
]
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Regression mean results for dL  
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Regression mean results for NAP  
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Regression mean results for 𝓜  
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Regression mean results for χeff  
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Taking a look at current detections: GWTC-1
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Taking a look at current detections: GWTC-2
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Future work:
Extending the
parameter space
● Early tests with the eccentric TaylorF2e approximant 

show these methods can resolve eccentricity for total 

mass M<20M
⊙

.

● Further tests with approximants that allow a larger 
parameter space are in the works.

● Effects such as precession could also be looked into.
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Future work: 
GW detection

● We tried a different, shallower architecture 
(ShuffleNet)

● To apply a classifier over arbitrary 
LIGO/Virgo data, including glitches should 
contribute to robustness

● To minimise false detections, score averaging 
+ higher thresholds can be used

● Example on the right: a 60s segment centered 
around GW190929

● From the 49 known BBH signals, 28 meet the 
detection conditions under this setup

● Further optimization is likely possible
22



Future work: 
GW detection

● We tried a different, shallower architecture 
(ShuffleNet)

● To apply a classifier over arbitrary 
LIGO/Virgo data, including glitches should 
contribute to robustness

● To minimise false detections, score averaging 
+ higher thresholds can be used

● Example on the right: a 60s segment centered 
around GW190929

● From the 49 known BBH signals, 28 meet the 
detection conditions under this setup

● Further optimization is likely possible
23



Thank you for your attention

For a more in-depth discussion, check out our paper at https://doi.org/10.1088/1361-6382/ac0455
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https://doi.org/10.1088/1361-6382/ac0455


● Dropout is applied at validation 
and test time in addition to 
during training

● Multiple forward passes of a 
single input provide a 
distribution whose mean value 
tends to result in lower 
discrepancies with the real value

● Allows for the estimation of the 
model’s epistemic uncertainty

Bayesian CNN using mc-dropout
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Image credits: Daniel Huynh

Y. Gal and Z. Ghahramani, ‘Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference’, arXiv:1506.02158 [cs, stat], Jan. 2016



The Network Antenna Power (NAP)
● The sky position of an event cannot be fully 

determined with only 3 detectors, there 
being 2 points that are equally likely to be 
the origin of a certain event.

● This degeneracy between physically 
indistinguishable events can keep the 
network from converging

● The NAP can serve as a proxy observable 
from which we can deduce the sky position, 
given a certain event and the corresponding 
GPS time
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Dataset
information
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