Gravitational wave signature of proto-neutron star convection

Raphaël Raynaud (CEA) Pablo Cerdá-Durán (Universitat de València) Jérôme Guilet (CEA)

11th Iberian Gravitational Waves Meeting June 9th-11th, 2021

Introduction	Model	Results	Conclusion
Table of contents			

3 Results

Results

Conclusion

GW signal in CCSNe

GW signal of PNS convection

Introduction	Model	Results	Conclusion
Table of contents			

Modelling the PNS convective zone

• Magnetic: perfect conductor (B//) / pseudo-vacuum (B_)

Hypothesis:

- Spherical geometry
- Adiabatic stratification
- Low Mach convection
- 2nd order diffusion approximation for the neutrino transport
- Electrical conductivity of degenerate, relativistic electrons

```
 \begin{array}{c} \bullet & {\rm Orders \ of \ magnitude} \\ \left\{ \begin{array}{l} \Phi_o \sim 10^{52} \ {\rm erg/s} \\ r_o \sim 25 \ {\rm km} \\ T_o \sim 10^{11} \ {\rm K} \\ \varrho_o \sim 10^{13} \ {\rm g/cm}^3 \\ \nu_o \sim 10^{10} \ {\rm cm}^2 / {\rm s} \\ \kappa_o \sim 10^{12} \ {\rm cm}^2 / {\rm s} \\ \eta_o \sim 10^{-3} \ {\rm cm}^2 / {\rm s} \end{array} \right. \end{array} \right.
```

Results

Conclusion

Early and late time background models

Ohmic heating

Heat flux

Viscous heating

Results

Conclusion

3D MHD direct numerical simulations

Control parameters		Input
Prandtl number	$Pr = \nu_{o}/\kappa_{o}$	${\it Ra/Ra_c}\sim 10$
magnetic Prandtl number	$Pm = \nu_{o}/\eta_{o}$	D 01
Ekman number	$E = \frac{\nu_o}{\Omega d^2}$	Pr = 0.1
	$\tilde{T}_{o}d^{3}\left.\frac{\partial S}{\partial r}\right _{r_{o}}$	$Pm \sim 5 ~(\ll 10^{14})$
Kayleigh number	$Ra = \frac{1}{\nu_0 \kappa_0}$	$\boldsymbol{E} \equiv \boldsymbol{P}_{rot} \in [1ms, 10^2ms]$

Output

Gravitationnal signal computed with the quadrupole approximation

Introduction	Model	Results	Conclusion
Table of contents			

1 Introduction

2 Model

PNS convective dynamos and magnetar formation

R. Raynaud (CEA)

GW signal of PNS convection

Results

Conclusion

Typical cases: slow versus fast rotation

R. Raynaud (CEA)

GW signal of PNS convection

R. Raynaud (CEA)

Results

Conclusion

Frequency scaling: slow rotation

Results

Conclusion

Fast rotation: frequency scaling

t = 5 s post bounce 1 ms < Period < 6 ms

Results

Conclusion

Strong field dynamo signature ?

R. Raynaud (CEA)

Introduction	Model	Results	Conclusion
Table of contents			

1 Introduction

2 Model

3 Results

Conclusions		Raynaud et al.	(arXiv:2103.12445)
Introduction	Model	Results	Conclusion

Slow rotation ($Ro \gg 1$)

- broad spectrum
- peak scales with f_{turn}
- weak impact of B field

Fast rotation ($Ro \ll 1$)

- h_{rms} strongly increases
- complex spectra
- peaks scale with $f_{\rm rot}$
- inertial modes
- low frequency signature of strong field dynamo

Limitations

- consider only one background model
- no continuous evolution of the PNS cooling (no realistic GW template)
- convective zone only (no g-modes)

Perspectives: detectability

 use amplitude/frequency scalings to rescale the signal as a function of the background evolution