Machine Learning forecasts of the distance duality relation with strongly lensed GW events

Rubén Arjona

11th Iberian Gravitational Waves Meeting
June 9, 2021
I. Distance Duality relation

II. Strongly Lensed GW events

III. Machine Learning forecasts

IV. Results
The distance duality relation

Etherington relation: relates the luminosity distance to the angular diameter distance at any redshift z

$$d_L(z) = (1 + z)^2 d_A(z)$$

Duality parameter

$$\eta(z) \equiv \frac{d_L(z)}{(1 + z)^2 d_A(z)}$$

$$\equiv (1 + z)^{\epsilon(z)}$$

Hint of new physics

$$\eta(z) \neq 1 \text{ or } \epsilon_0 \neq 0$$
Strongly Lensed GW events: $d_A(z)$

In order for our method to work, we must independently measure the following observables:

$$(z_l, z_s, \Delta t, \Delta \phi, \theta_E, \sigma_{\text{SIS}})$$

The geometry of gravitational lensing
Strongly Lensed GW events: $d_A(z)$

$$(z_l, z_s, \Delta t, \Delta \phi, \theta_E, \sigma_{SIS})$$

Time delay between the images
$$\Delta t = \frac{(1 + z_l)}{c} \frac{d_A(z_l) d_A(z_s)}{d_A(z_l, z_s)} \Delta \phi$$

Fermat potential difference
$$\Delta \phi = \frac{(\theta_1 - \beta)^2}{2} - \Psi(\theta_1) - \frac{(\theta_2 - \beta)^2}{2} + \Psi(\theta_2)$$

Einstein radius
$$\theta_E = \frac{|\theta_1 - \theta_2|}{2} \quad \theta_E = \frac{4\pi \sigma_{SIS}^2 d_A(z_l, z_s)}{c^2 d_A(z_s)}$$

Distance ratio
$$R_A \equiv \frac{d_A(z_l, z_s)}{d_A(z_s)} = \frac{c^2 \theta_E}{4\pi \sigma_{SIS}^2}$$
Strongly Lensed GW events: $d_A(z)$

Then we can solve uniquely for the angular diameter distance

$$d_A(z_s) = \frac{1 + z_l}{1 + z_s} \frac{R_A D_{\Delta t}}{1 - R_A}$$

$$D_{\Delta t} \equiv \frac{d_A(z_l) d_A(z_s)}{d_A(z_l, z_s)} = \frac{c}{1 + z_l} \frac{\Delta t}{\Delta \phi}$$

$$\frac{\delta d_A(z_s)}{d_A(z_s)} = \sqrt{\left(\frac{\delta R_A}{R_A(1 - R_A)}\right)^2 + \left(\frac{\delta D_{\Delta t}}{D_{\Delta t}}\right)^2}$$
The luminosity distance to the source can be directly obtained by matching the GW signals to the GW templates.

\[h(t) = F_+(\theta, \varphi, \psi)h_+(t) + F_\times(\theta, \varphi, \psi)h_\times(t) \]

\[\mathcal{H}(f) = Af^{-7/6} \exp[i(2\pi ft_0 - \pi/4 + 2\psi(f/2) - \varphi(2,0))] \]

\[A = \frac{1}{d_L} \sqrt{F_+^2(1 + \cos^2 \iota)^2 + 4F_\times^2 \cos^2 \iota} \sqrt{\frac{5\pi}{96}} \pi^{-7/6} M_c^{5/6} \]

\[S_h(f) = 10^{-50}(2.39 \times 10^{-27} x^{-15.64} + 0.349 x^{-2.145} + 1.76 x^{-0.12} + 0.409 x^{1.1})^2 \text{ Hz}^{-1} \]

Our method to measure the duality relation requires direct measurements of source redshift, achievable only for NS-NS and NS-BH mergers.
Fiducial cosmological distances

Forecast direct measurements of the duality parameter from the ET

We use a MCMC approach to create mock samples.

![Graph showing redshift distribution](image)

Fiducial Cosmology ΛCDM

\[
H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}
\]

\[
\Omega_{m,0} = 0.3
\]

\[
\Omega_k = 0
\]

Redshift distribution of SL GW sources based on the initial configuration of ET.
Fiducial cosmological distances

Modification of the luminosity distance

\[d_{L,\text{obs}}(z) = (1 + z)^\varepsilon(z) d_{L,\text{bare}}(z) \]

\[\eta(z) \equiv \frac{d_L(z)}{(1 + z)^2 d_A(z)} \equiv (1 + z)^\varepsilon(z) \]

\[\varepsilon_0 = (0.01, 0.05, 0.1) \]

Mock sample: at each redshift we create mock distances \(d_A(z_s) \) and \(d_L(z_s) \)

\[(D_{i,\text{mock}}, \sigma_{i,\text{mock}}) \rightarrow \mathcal{N}(D_{i,\text{fid}}, \sigma_{i,\text{fid}}) \]
Mock DDR data points

MCMC-like approach to obtain the mean values and the errors of the data points as follows:

1. Using the mock distances at each redshift \(D_{i,\text{mock}} \) we draw 10,000 random samples from the assumed distribution for \(D_{i,\text{mock}} \).

2. We then estimate \(\eta(z_i) \) at each redshift \(z_i \) for each of the 10,000 random points using Eq. (2) to obtain 10,000 realisations of the distribution of \(\eta(z_i) \).

3. We estimate the mean and standard deviation of \(\log_{10} \eta(z_i) \) at each redshift point to create our final mock sample.

\[
-2 \ln \mathcal{L} = \sum_{i=1}^{N_{\text{lens}}} \left(\frac{\log_{10} \eta(z_i) - \log_{10} \eta^{\text{th}}(z_i)}{\sigma_{\log_{10} \eta(z_i)}} \right)^2
\]
Machine Learning

Machine learning (ML) is the study of computer algorithms that improve automatically through experience.

- Can **remove biases** due to a priori chosen models.

- Will play a big role in **testing** accurately the ΛCDM model.

- Search for new physics or **systematics** in the data.

- Search for tensions in the data by placing **tighter constraints** on parameters.

- Applied to **reconstruct** consistency tests of ΛCDM.
Genetic Algorithms (GA)

-The GA is a stochastic optimization and reconstruction ML approach, not very different from MCMC.

-The model itself is evolving as the code runs, since we are exploring the functional space.

-It’s not biased by a priori selected models or other assumptions.

-Strong mathematical foundations with several rigorous theorems on convergence, selection, etc.

-Well tested and simple to implement.
Genetic Algorithms

Reconstruct data without assumptions on the theoretical model

- Stochastic search approach

- Start with a set of functions and grammar
 \[(\sin(x), 1 + x + x^2, e^x, \log(x), \ldots) (\pm, -, \times, \div, \lor)\]

- Two basic operations:

 Mutation

 \[f_1(x) = 1 + x + x^2 \quad \Rightarrow \quad f_1(x) = 1 + 2x + x^2\]

 \[f_2(x) = \sin(x) + \cos(x) \quad \Rightarrow \quad f_2(x) = \sin(x^2) + \cos(x)\]

 Crossover

 \[\tilde{f}_1(x) = 1 + 2x + \cos(x)\]

 \[\tilde{f}_2(x) = x^2 + \sin(x^2)\]

- Fitness Function

 \[\chi^2(f) = \sum_{i=1}^{N} \left(\frac{y_i - f(x_i)}{\sigma_i} \right)^2\]
Results
Conclusions

I. Test of fundamental physics with strong GW lensing

II. Methodology to create direct duality relation mocks

III. A Machine Learning approach to reconstruct the duality relation
Back-up slides