Rapid Online Estimation of GW Source Redshift and Astrophysical Source Category

Verónica Villa-Ortega¹, T. Dent, A. Curiel IGFAE, University of Santiago de Compostela

Iberian GW Meeting, 11 June 2021

¹veronica.villa@rai.usc.es

Source Classification for Rapid Follow-up

doi.org/10.3847/2041-8213/aa91c9

GW170817 + EM counterparts follow-up

GW					
LIGO, Virgo			1.1		
γ-ray					
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Sv	ift, AGILE, CALET, H.E.S.S., HAWC, Kor	nus-Wind			
X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL					•
UV					<u> </u>
Swift, HST				T	
				1 1 1	
Optical			•		
Swope, DECam, DLT40, REM-ROS2, HST, Las Cu HCT, TZAC, LSGT, T17, Gemini-South, NTT, GRON BOOTES-5, Zadko, iTelescope.1 et, AAT, Pi of the S	nbres, SkyMapper, VISTA, MASTER, Ma ID, SOAR, ESO-VLT, KMTNet, ESO-VST ky, AST3-2, ATLAS, Danish Tel, DFN, T8	gellan, Subaru, Pan-ST, VIRT, SALT, CHILESC 0S, EABA	ARRS1, DPE, TOROS,		
IR					
REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer	NTT, GROND, SOAR, NOT, ESO-VLT, K	Kanata Telescope, HST	I		rear and the second
Radio					· · · · · · · · · · · · · · · · · · ·
ATCA, VLA, ASKAP, VLBA, GMHT, MWA, LOFAR, I	WA, ALMA, OVHO, EVN, e-MERLIN, Me	eerKAI, Parkes, SHI, Ef	elsberg		
		· · · · · · · · · · · · · · · · · · ·			
-100 -50 0 50	10 ⁻²	10-1		10º	10 ¹
t - t_c (s)	we need	very	<i>t-t_c</i> (days)		
~2 s	low-laten	icy	~11 h	- ~16 h	~9 d

Source Classification for Rapid Follow-up

GW170817 + EM counterparts follow-up

MAIGFAE USC

XUNTA DE GALICIA

PyCBC Live Alerts in 03

https://arxiv.org/pdf/1805.11174.pdf

Source classification based on "hard cuts" on component masses $m_1 m_2$

- Assigns Boolean 0 or 1 to the different CBC categories just one final category
- Neglects uncertainties in component masses
 ~ 20-30%
- Does not account for redshift bias

PyCBC Live Alerts in 03

https://arxiv.org/pdf/1805.11174.pdf

Source classification based on "hard cuts" on component masses $m_1 m_2$

- Assigns Boolean 0 or 1 to the different CBC categories just one final category
- Neglects uncertainties in component masses
 ~ 20-30%
- Does not account for redshift bias

We can improve this

- Spectrum of probabilities
- Use a quantity with little uncertainty: chirp mass ~0.1-1% $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
- Add redshift correction

IGFAE USC 🐺 XUNTA

New Classification Method

IGFAE

XUNTA DE GALICIA

VIRGO

Source Redshift Estimation

Not available!

Pipeline template is redshifted compared to source chirp mass $M_{tmpl} = M_{src} \cdot (1+z)$

Redshift is a function of luminosity distance
 → computed by BAYESTAR once the event
 has been uploaded to GraceDB
 ...

What do we have available?

- Effective distances to the source
 - Luminosity distance * antenna factor

$$D_{\rm eff} = D \left[F_+^2 \left(\frac{1 + \cos^2 \iota}{2} \right)^2 + F_\times^2 \cos^2 \iota \right]^{-1/2}$$

- One effective distance for each detector
- Estimate a numerical relation between distances
- $\circ~$ Since $~D_{eff} \geq D_{lum}~$ we can take the minimum effective distance

Source Redshift Estimation

- Estimation of luminosity distance
 - Estimate a relation between distances using
 PyCBC Live and BAYESTAR data of O3a events

 $\tilde{D}_{\text{lum}} = 0.749 \cdot min(D_{\text{eff}})$

- Estimation of the uncertainty of luminosity distance
 - Using the signal-to-noise ratio from the pipeline

$$\tilde{\sigma}_{\text{lum}} = \tilde{D}_{\text{lum}} \cdot e^{-0.516} \cdot \rho_{\text{coinc}}^{-0.322}$$

- We propagate the distance uncertainty into the redshift and chirp mass uncertainty
- This correction will be dominant over the assumed 1% uncertainty in chirp mass

STATE USC 🔢 XUNTA

Results with simulated signals

To check the method we simulated a population of astrophysical signals, added them to real data from O3 and recovered them with PyCBC Live

Rapid Online Estimation of GW Source Redshift and Astrophysical Source Category

IGFAE USC RUNTA

Results with O3a data

GWTC-2: https://arxiv.org/abs/2010.14527

We applied the method to PyCBC Live triggers of O3a

Events	Estimated Prob (%)	GCNs Prob(%)*	Catalog Masses + PE
GW190426_152155	NSBH 52, MG 41 BNS 7	BNS 57 MG 27 NSBH 14 ^(a) NSBH 60 MG 25 BNS 15 ^(b)	m ₁ 5.7 m ₂ 1.5 NSBH 64 MG 30
GW190707_093326	BBH 47 MG 46 NSBH 6	BBH 100	m ₁ 11.6 m ₂ 8.4 BBH 100
GW190720_000836	BBH 49 MG 46 NSBH 4	BBH 100	m ₁ 13.4 m ₂ 7.8 BBH 99
GW190814	NSBH 52 MG 31 BBH 17	MG 100	m ₁ 23.2 m ₂ 2.59 NSBH 100
GW190924_021846	NSBH 55 MG 30 BBH 15	MG 100	m ₁ 8.9 m ₂ 5.0 BBH 51 MG 45
GW190930_133541	BBH 47 MG 46 NSBH 6	MG 100	m ₁ 12.3 m ₂ 7.8 BBH 92

 * rescaled to sum to 100 $\%^{~~(a)}$ Initial GCN, $^{(b)}$ Preliminary PE

Summary and Future Work

- Previous "hard-cuts" classification can be completely wrong, while the new classification method always give some probability to the correct source.
- The great majority of BNS and BBH events are assigned high or very high correct class probabilities.
- Only for MassGap events this probability is mainly below 50%, but since the method usually assigns them to be NSBH this can be considered as a conservative outcome.
- As future work we will introduce some information about the populations of the sources in the prior of candidate events in the masses plane.
- We probably will say goodbye to MassGap category
- Investigation about binary mass ratio and spins in very low-latency
- We need more studies on biases and uncertainties

Thank you for your attention!

Results with O3a data

н.

GWTC-2: https://arxiv.org/abs/2010.14527

We applied the method to PyCBC Live triggers of O3a

Events	Estimated Prob (%)	Estimated Prob w/o MG	Catalog Masses + PE
GW190426_152155	NSBH 52 MG 41 BNS 7	NSBH 94 BBH 6	m ₁ 5.7 m ₂ 1.5 NSBH 64 MG 30
GW190707_093326	BBH 47 MG 46 NSBH 6	BBH 92 NSBH 8	m ₁ 11.6 m ₂ 8.4 BBH 100
GW190720_000836	BBH 49 MG 46 NSBH 4	BBH 96 NSBH 4	m ₁ 13.4 m ₂ 7.8 BBH 99
GW190814	NSBH 52 MG 31 BBH 17	NSBH 52 BBH 98	m ₁ 23.2 m ₂ 2.59 NSBH 100
GW190924_021846	NSBH 55 MG 30 BBH 15	NSBH 56 BBH 44	m ₁ 8.9 m ₂ 5.0 BBH 51 MG 45
GW190930_133541	BBH 47 MG 46 NSBH 6	BBH 86 NSBH 14	m ₁ 12.3 m ₂ 7.8 BBH 92

