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Zone plates with cells apodized by Legendre profiles

Jorge Ojeda-Castaneda, Pedro Andres, and Manuel Martinez-Corral

By apodizing the cells of a zone plate and changing the opening ratio, it is possible to shape the relative power
spectrum of its foci. We describe a novel procedure that leads to an analytical formula for shaping the focus
power spectrum by using apodizers expressible as the Legendre series; these act on cells of arbitrary opening
ratio. Qur general result is used to design zone plates that have missing foci and to discuss a synthesis
procedure using apodizers with various opening ratios. Our applications can also be used for shaping the

power spectrum of 1-D gratings.

l. Introduction

Multiple images of an input picture are used in
microelectronics for mask generation, producing new
patterns in the textile industry and automatic recogni-
tion by pyramidal image processing.! Multiple in-
plane impulse responses are generated by gratings??;
while multiple on-axis impulse responses are created
by a Fabry-Perot interferometer? or using zone
plates.®6

For some applications, it is convenient that the mul-
tiple impulse responses have prespecified characteris-
tics. For example, in microelectronics it is useful for
the multiple responses to have high focal depth. The
impulse response is usually tailored in instrumental
spectroscopy and in imaging systems by apodization.”
Recently, some efforts have been addressed to increas-
ing the focal depth or reducing the influence of spheri-
cal aberration by apodization.812 However, except
for a few examples,'®'* it seems that apodization has
not been applied to shape multiple impulse responses
along the optical axis.

The aim of this paper is to report a novel procedure
that gives an analytical formula for evaluating the
relative peak energy of the multiple responses of zone
plates with an arbitrary opening ratio. The elemen-
tary cells are expressible as a series of Legendre poly-
nomials. This approach is illustrated by designing
zone plates that do not produce certain foci.

In Sec. I, we use Bauer’s formulal® for discussing the
relative irradiances of an in-plane multiple impulse

The authors are with University of Valencia, Interuniversity De-
partment of Optics, 46100 Burjassot, Spain.

Received 10 July 1989,

0003-6935/90/091299-05$02.00/0.

© 1990 Optical Society of America.

response. In Sec. III, we extend the discussion to on-
axis multiple impulse responses, using the quasiperio-
dic approach of Lohmann and Paris.’8 In Sec. IV, we
define novel profiles for achieving zone plates with
missing foci. In Sec. V, we describe a profile synthesis
procedure that uses apodizers with different opening
ratios.

Il. In-Plane Multiple Impulse Responses

We start by considering a grating with period d. In
each period, the grating transmittance is assumed to be
zero for all the points inside a band whose width is (1 —
s)d. The parameter s, where 0 < s < 1, is called here
the opening ratio of the grating. The complex ampli-
tude transmittance of a grating with opening ratio s
can be written in terms of a Fourier series as

Flx,;s) = z C,.(s) exp(i2wxm/d), (1)
where
5elf2
C,(s) = (1/d) I Fix,s) exp(—i2rzm/d)dx. (2)
—sed 2

Next we recognize that the kernel in the integral
transform in Eq. (2) can be written using Bauer’s for-

mula. Since
exp(—ixy) = > (—i)"(2n + DP()j(), @)
=0
we find that

exp(—i2mxm/d) = z (—iy"(2n + 1P (2x/sd)j (m=s).  (4)
n=()

In Egs. (3) and (4), P, denotes the n-order Legendre
polynomial, and j, represents the spherical Bessel
function of the n-order, also known as the Bessel func-
tion of the fractional order.
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Now, by substituting Eq. (4) in Eq. (2), we obtain

df2

Co) = Y (=irn + 1][(1/d} j zF(x,s)P,,(Zx;‘sd}dx] i (mxs),
n=0 -

saf
(5)
which, using the change of variable, can be rewritten -

t=2xfsd, G(t) =Flxs), (6)

= 1
C..(s) = (s/2) z (=i)*(2n + 1)j,(maws) [j G(t)Pn(t)dt] - (7
n={} -t

Note that the change of variable in Eq. (6) makes the
integral in Eq. (7) independent of the opening ratio s.
Furthermore, Eq. (6) indicates that from a given apo-
dizing function G(¢), it is possible to generate a whole
family of apodized gratings, F(x,s), which have the
same transmittance profile with a different opening
ratio, as is shown in Fig. 1. We point out the interest-
ing fact that any pair of functions belonging to the
same family is related by a scale transformation, hamely,

Fl(x,8,) = Fsyx/s,,8,). (8)

Since we are interested in apodization profiles that
are expressible as a series of Legendre polynomials,

G() = a,P(t). ©)
gq=0
By substituting Eq. (9) into Eq. (7) and taking into
account the orthogonal property of the Legendre poly-
nomials, we obtain

Cols) =5 (=i)%a,j,(xms). (10)
g=0

Note that as a particular case Eq. (10) contains the
square groove grating, which is characterized by ap =1

and a; = 0 for ¢ » 0. Then Eq. (10) becomes
C,.(s) = sjg(wms) = s sin(wms)/(wms). (11)
From Eq. (10) it is now possible to evaluate the
relative power spectrum of in-plane multiple impulse
responses, | Cp,(s)]2, for variable opening ratio s and for
any apodizing function which can be expressed as a
series of Legendre polynomials. This treatment is

extended next to zone plates.

lll.  On-Axial Multiple Impulse Responses

The complex amplitude transmittance of any zone
plate, with opening ratio s, can be written as

H(rs) = Z h(s) expli2rm(r/R), (12)
where the radial coordinate is r, the period of the zone
plate in r2is R2, and

sR?
hn(s) = (1/R%) J H(2s) exp[—i2em(r/R)2d(™).  (13)
Ul
Next, it is convenient to make the following change of
variables:
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Fig. 1. Generation of apodizing functions with the same transmit-

tance profile but different opening ratio.

x =12 —sRY2, Jixs)=H@r*s), d=R> (14)

By substituting Eq. (14) into Eq. (13) we obtain
5d/2

B, (s) = (1/d) [ J(x,5) exp(—i2xmx/d)dx, (15)
a1 .'}2

which is recognized as Eq. (2). Consequently, by using
the procedure discussed in Sec. II, we find that

hin(s) =5 " (=i)agj,(xms). (16)
g=0
When using this formulation, it is important to re-
member that, from Eqgs. (6), (9), and (14),
H(?) = J(x =" = sRY2) = aP(t = 2%sR = 1).  (17)
q=0
The above formulation is illustrated next with some
examples.

IV. Zone Plates with Missing Foci

We consider first the trivial case of rectangular cells.
Next, we discuss apodization by the first-order Legen-
dre polynomial, and later we propose a compound
Legendre apodizer.

A. Zero-Order Legendre Ruling

As we indicate in Eq. (11), for this example we find
that

a, =8, G =Pyt)=1, (18)
and consequently
h,(s) = sjy(wms) = sin(rms)/mm. (19)

In Eq. (18) 6y denotes Kronecker’s delta. The result
in Eq. (19) is the well-known formula for rectangular
profiles. This formula predicts that for an opening
ratio of one half, s = 0.5, the even orders vanish. This
type of zone plate (or grating) is known in the optics



literature as a Fresnel-Soret plate (or Ronchi ruling).
The above results are shown graphically in Fig. 2.

B. First-Order Legendre Ruling

In this case the only coefficient different from zero is
ay, that is, @, = 81, or equivalently G(t) = P(¢) = ¢;
hence

h,.(s) = (—is)j (zms)

= (—is)[sin(xms)/(xms)? — cos(wms)/(wms)].  (20)

As can be seen in Fig. 3, there are some values of s for
which the coefficients h.,, in Eq. (20), are eliminated.
For example, the value of s can be chosen to satisfy the
following roots of ji:

ams = w(1.43) or wms = =(2.47). (21)

Note from Fig. 3 that the first on-axis diffraction order
cannot be canceled by using an apodizer proportional
to the first-order Legendre polynomial. However, by
using the first root in Eq. (21), the second focus can be
canceled by setting s = 0.71. The third focus vanishes
for two different values of s. The fourth focus can
disappear for s = 0.36 and so on. Any interested
reader can use the above procedure for eliminating
certain foci with suitable values of s.

C. Compound Legendre Ruling

The same procedure holds for other Legendre rul-
ings. In Fig. 4 we show the amplitude transmittance
profile obtained combining the zero-order Legendre
polynomial and the second-order Legendre polynomi-
al:

G(t) = (2/3)Py(t) — (2/3)Py(t) = 1 — 2. (22)

The focal power spectrum vs the opening ratio of this
kind of apodizer is

|h(s)|? = 4s¥[sin(wms)/(wms)® = cos(wms)/(zms)?]%,  (23)

as shown in Fig. 5.

Instead of discussing other Legendre apodizers, we
next outline a synthesis procedure which considers the
possibility of adding functions with the same profile
but with a different opening ratio.

V. Synthesis Procedure: Various Opening Ratios

We show now that it is possible to synthesize coeffi-
cients hn,(s) by the weighted sum, and/or difference, of
coefficients h,,(sys), where k = 1,2,3,... These later
coefficients are obtained from individual functions
J(x,s;), which are members of the set of apodizers
generated with the same apodizing function G (¢).

In other words, we can start with a certain generat-
ing apodizer G(¢). Then one can obtain any member
of the family of apodizers J(x,s) having the same pro-
file but different opening ratio, as expressed in Eq. (6),

namely,
x = (sd/2)t, J(x,8) = G(t). (24)

It is valid to consider an apodizing profile that is the
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Fig. 2. Traditional method of focus elimination by changing the
opening ratio of rectangular cells.
~
£
=
P
=
=
—
(& ]
w
o
w
o
w
=3
o
o

OPENING RATIOQ:s

Fig. 3. Focus elimination by changing the opening ratio of cells
apodized with the first-order Legendre polynomial, as in Fig. 1.
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Fig. 4. Amplitude transmittance: (a) dotted line, the zero-order

Legendre polynomial; (b) dashed line, the second-order Legendre

polynomial; (c) solid line, the combination of (a) and (b) as in Eq.
(22).
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Fig. 5. Focal power spectrum of the apodized zone plate in Fig. 4.
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Fig. 6. Pyramidlike apodizer (solid line) generated by adding with
various weights three rectangular functions (discontinuous lines) of
different opening ratio.

weighted sum of several apodizers of equal profile but
different opening ratio, that is,
K
@) = el(x,s,). (25)
k=1
We consider now that the resultant profile, f(x) in
Eq. (25), can be thought of as a new generating apo-
dizer G’(t), namely,
K
G/(¢) = fl(a/2)t] = Z e, J[(d/2)t,5,]. (26)
k=1
As in Eq. (24), we can generate a new family of
apodizers, J'(x,s), that have the same profile as the
generating function G’(¢) but with a variable opening
ratio. In this case the formula equivalent to that in
Eq. (24) is
K
x=mwm,wum=§}¢u@m
k=1
K
] epd(x,3,8), 27

b=
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Fig.7. Focal power spectrum of pyramidlike apodized zone plate in

Fig. 6.

where, taking into account Eq. (8), J(x,s,5) = J(six/
SkS,sk) = J(x/s,8).

As the formation of multiple impulse responses is a
linear process in complex amplitude, coefficients h,,(s)
for the new apodizers J'(x,s) are

K
Bals) = epfinsys)- (28)
k=1
The result in Eq. (28) is rema{rkable, since it allows one
to calculate the coefficients h,, for the variable opening
ratio of a synthesized apodizer composed of a series of
apodizers with the same profile and variable opening
ratio. Next we consider some examples.

In Fig. 6 we show the synthesis of a discontinuous
function, obtained by properly adding and subtracting
rectangular functions (zero-order Legendre polynomi-
als) with a different opening ratio. From the generat-
ing apodizer, we have apodizers with a different open-
ingratio and the same profile; consequently, one is able
to shape the coefficients h,,(s) as shown in Fig. 7.

The same procedure applies for synthesizing contin-
uous profiles, as shown in Fig. 8, where we display a
piecewise continuous apodizer that results from add-
ing and subtracting the apodizer of Fig. 4 with a differ-
ent opening ratio. The coefficients|h,|2 form =1, 2,
3, and 4, vs the opening ratio are displayed in Fig. 9.

The two examples indicate how to shape the focus
power spectrum by using novel apodizing profiles ob-
tained from the same Legendre ruling with a different
opening ratio.

VI. Conclusions

We describe a novel approach for evaluating analyti-
cally the relative power spectrum of the multiple im-
pulse responses, which are generated by gratings or
zone plates, if the cells of these diffraction elements are
apodized, by functions expressible as a Legendre se-
ries. Our formula considers explicitly the opening
ratio of the cell, and it allows us to synthesize the
apodizing function by using Legendre polynomials of
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Fig. 8. Continuous apodizing function (solid line) generated by
adding with different weights three functions (discontinuous lines)
like that of Fig. 4 but with a different opening ratio.
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Fig. 9. Focal power spectrum of the continuous apodizer in Fig. 8.

any degree and any opening ratio. We illustrate our
formula by designing apodizers, called Legendre rul-
ings, that eliminate certain on-axis diffraction orders,
and in this way we obtain zone plates that exhibit
missing foci. Finally, we propose a synthesis proce-
dure for designing apodizers by adding the same trans-
mittance profile with a different opening ratio.
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