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The amplitude impulse response (AIR) of coherent imaging systems with random binary apodizers is analyzed.
Formulas for the mean value and the variance of the AIR are derived for two statistical one-dimensional models
of apodizers: (1) nonuniform low-density shot noise and (2) a nonuniform unipolar synchronous random pro-
cess. We show that for both models a high signal-to-noise ratio is achieved within the central peak and the
low-order sidelobes of the AIR. Apodizers based on the second model permit higher values of the signal-to-

noise ratio than those based on the first one.

1. INTRODUCTION

There exists a large variety of methods of producing
apodized pupils with continuously varying transmittance.!
It is evident that the generation of such pupils is burdened
with technical difficulties. Therefore attention has been
paid recently to binary pupils, which in many coherent
systems successfully substitute for the continuous ones.'™
Hegedus* has found that the most convenient way of pro-
ducing a binary diffuser is to print equal-sized dots (e.g.,
with a light plotter) on a random carrier. In his method the
average number of dots per unit area varies according to
the pupil function. In Ref. 4 Hegedus has also proposed a
simple algorithm that drives a printing device.* The prob-
lem of random binary elements in the pupil was also con-
sidered by Varamit and Indebetouw® and Beal and George.”
In this paper we analyze the amplitude impulse response
(AIR) of a coherent imaging system with a random binary
apodizer in the pupil plane. We derive expressions for the
average and the variance of the AIR. We consider two
models of random apodizers. The first is the model based
on a nonuniform linearly filtered Poisson impulse process
(nonuniform shot noise), and the second, that of Hegedus,
may be classified as a nonuniform checkerboard model.

2. THEORY

For simplicity we assume the one-dimensional 4f imaging
system with coherent illumination shown in Fig. 1. The
finite bandwidth of the system is represented by a uniform
pupil of width 2L placed in the spatial frequency plane.
The transfer function of the system is given by

P(v) = rect(wAf/2L) = rect(x/2L), @
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where A is the wavelength of the illuminating beam, »
stands for spatial frequency, and x is the spatial coordinate
in the spatial frequency plane. The amplitude transmit-
tance of a randomly apodized pupil, £(x), is assumed to be a
sample function of a random spatially nonstationary pro-
cess T'(x) whose values belong, in general, to the (0,1) in-
terval. We take into account the finite bandwidth of the
system [Eq. (1)] by choosing the average value #(x) equal
to zero for |x| > L rather than by multiplying ¢(x) by
P(x/2L). This seems to be reasonable in the case of a
nonnegative process T'(x). For |x| = L we choose #(x)
equal (at least approximately) to the deterministic
apodized pupil function p(x) that we intend to replace
with a random, in particular, binary, function. We as-
sume that p(x) is real and symmetric.

Random Absorbing Pupil Modeled with Nonuniform Shot
Noise of Low Density

Here we assume that ¢(x) consists of a multitude of posi-
tive impulses A(x — x;) (i = 1,2,...,N) of width / and
unit height, which are distributed according to the Poisson
law (see Fig. 2):

N
t(x) = h(x) ® D 8(x — x:), (2a)

i=]

Prob{% impulses fall within the (x;, x;) interval}

X2 k X2
= % [L A(x)dx] expl:—fle A(x)dx], (2b)

where ® is the convolution operation, & is a Dirac delta
function, N is the number of impulses on the whole real
axis, and A(x) is the rate function of the Poisson impulse
process. A(x) is assumed to be a Fourier-transformable
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Fig. 1. Geometry of the one-dimensional 4f imaging system.

A(x)=c-p(x)
(a)
-L L :
bt
(b)
VAN AL A MNMA

Fig. 2. Example of the nonuniform shot-noise process. (a) Rate
funetion A(x) = ¢|x|/L for |x| = L and zero otherwise; (b) sample
function corresponding to the rate function in (a).

function and equal to zero for |x| > L; therefore
L
fA(x)dx = f A(x)dx = N. 6)]
-L

We put
Alx) = cpx), 4)

where c is a dimensional constant in inverse meters. By a
proper choice of the value of ¢ we can avoid the overlap of
the impulses h(x — x;). Consequently, the real amplitude
transmittance #(x) given by Egs. (2) is kept in the (0,1)
interval. This is the case (with high probability) when
the condition

Ax) =05 5)

holds, i.e., when we deal with so-called low-density shot
noise.® If the condition of inequality (5) is fulfilled, the
probability that more than one impulse falls within the
interval (x,x + I) is equal to at most 0.09. Assuming
maximum values of p(x) =1 and [ = 50 pm, inequal-
ity (5) will be fulfilled if ¢ = 1/2] = 10* m™". The impulse
h(x) is assumed to be the impulse response of a certain
linear and space invariant system. In Fig. 3 we show a
negative of the random absorbing screen whose rows rep-
resent the sample functions of the form given by Egs. (2)
[multiplied by rect(x/l), where x' is the spatial coordinate
in the pupil plane perpendicular to x]. In Fig. 3 we put
the rate function A(x) in the form presented in Fig. 2(a)
for two different values of c.
The average pupil function #(x) is given by’

1) = Alx) ® h(x) = cp(x) ® h(x). ®)
Thus #(x) is approximately proportional to p(x) only if
l<< L. (D
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For h(x) = rect(xz/l) and ¢ = 1/2] we have

_ _ x+1/2
t(x) = cjp(f)rect(x §> dZ =c pd¢

l -2
<+12

1
=— des. 8
20 Jomipo pOU ®

If [ is sufficiently small, p(x) may be considered a linear
function within any interval of the length [, and so

#(x) = 0.5p(x). 9

Tt is seen that the use of the low-density shot-noise model
causes a double suppression of the dynamic range of pupil
function. This effect can be observed in Fig. 3, where
both edges of the negative of the filter (corresponding to
the transmittance of the positive’s being equal to unity)
are not filled up with black dots.

The average impulse response of the imaging system
shown in Fig. 1 above is given by

()1 _2m
s(Af) = t(x)exp( Y: yx>dx
J— 2
t(x)exp(— —A?-yx>dx . (10)

From Egs. (6) and (10) and the convolution theorem, it
holds that

(2 2 L5\ ) _ B (L2)e( ),
S<V>_Af$(/\f)%<hf) /\f@<)\f>%</\f> )

_1
-

Fig. 3. Negatives of absorbing screens based on nonuniform
shot noise. Each row represents a sample function of the form
given by Egs. (2) multiplied by rect(x/!). The rate function A(x)
is put in the form presented in Fig. 2(a) for two values of c:
(@c=25mm™, (b)c =50 mm™. Inboth cases = 0.017 mm
(150 dots per inch) and L = 50 mm.
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where &, ¥, and P are the Fourier transforms of A, h, and
p, respectively. Therefore (L/Af)P(Ly/Af) is the AIR of
the system with the pupil function p(x), and [#(ly/Af) is
the transfer function of the system that forms impulses
h(x — x;). It can be the system such as that shown in
Fig. 1 with the object transparency whose amplitude
transmittance equals

N
O(yo) = _218(3'0 - Yoi). 12)

If such a system is sufficiently defocused, i.e., the image
registration plane does not coincide with the geometrical
image plane, the impulse response of the system has an
approximately rectangular (binary) form.!! Of course,
in practice we print finite-sized dots at random points
[Egs. (2)] with a light plotter rather than use an imaging
system with an object that consists of a set of point
sources. Nevertheless, interpretation of 9 as a transfer
function is useful in a spectral analysis of random pupil
functions. In particular, well-known results of a spectral
analysis of nonuniform shot noise can be invoked.'?

We assume that the relation given by expression (7)
holds; therefore, in the neighborhood of the central maxi-
mum of P(Ly/Af), the function F(ly/Af) is approximately
constant. Hence the average AIR s is proportional to the
impulse response ? of our interest. For h(x) = rect(x/l)
and ¢/ = 0.5, Eq. (11) yields

S(y\_ L o(Ly by _ L
s(F)“zAfQ’(Af)S <f> zAf@< f) 43

In order to calculate the variance o,%(y) of the impulse
response s(y), we use the definition of the variance of a
complex random process:

o X(y) = |s(y) — s(M?. 14

Since for symmetric p(x) the average impulse response
s(y) is real, Eq. (14) yields the following variance:

= [s(y|* - s> (15)

The first term on the right-hand side of Eq. (15) is propor-
tional to the energy spectral density of the process T'(x),
whose sample functions are those given by Egs. (2) above.
Thus this term equals'?

Jsl* = </\f> $2<z\f>% <Af) (z\f) Nt ( f) as)

Equations (11), (15), and (16) yield

o ({)5e(2) ()
o (y) <Af N A Y: N. an

The narrower the impulses A(x — x;), the smaller the
variance of s(y) and the better the above approximation.
The signal-to-noise ratio (SNR) in the point-source image
given by a coherent system with randomly apodized pupil
may be defined as

SNR() = [s(D|/os(y). (18)

Although the SNR defined above cannot be measured di-
rectly in an experiment, as it refers to amplitude but not
to intensity distribution, it can be a useful parameter
when the behaviors of various types of random apodizer

a2(y)
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in a coherent imaging system are compared. Equa-
tions (11), (17), and (18) yield

SNR(y) = LIS(LyAf)|N"2, (19)

In order to obtain the correct form of the dependence of
SNR(y) on N, we must take into account the fact that the
function &£, being the Fourier transform of the rate func-
tion A, also depends on N. We can express this depen-
dence explicitly by introducing a normalized Fourier
transform of A:

A _ L(Ly/Af) .
L(Ly/Af) = —"—-2(0) (20)
Since
Ly) _ f 2 \exp| - 27
LSB(A)") = A<L>exp< Afyx>d (21)
then
1 x N
.58(0) = z‘ A(E>dx = f (22)
It follows from Egs. (19), (20), and (22) that
SNR(y) = NL(Ly/af)| = NP Ly/Af), 23)

where 9%( ¥) = P()/P(0) is the normalized AIR of the
imaging system with the deterministic pupil func-
tion p(x).

Equations (17) and (23) show that the variance of the
noise component in the point-source image is approxi-
mately constant (independent of y) and affects first the
sidelobes and not the central maximum, where a high
SNR is achieved. Therefore the pupil function generated
with the nonuniform shot-noise model is suitable for su-
perresolution and maximum energy concentration within
the central peak.

Random Absorbing Pupil Modeled with a Unipolar
Synchrenous Nonstationary Random Process

A one-dimensional analog of the checkerboard model used
by Hegedus is a unipolar synchronous nonstationary
random process (random nonstationary unipolar binary
transmission) described below. Say that we are given a
sequence of points x, such that

n=0,+1,+2, (24)

where e is a random variable uniformly distributed in the
(—1/2,1/2) interval. We construct a random pupil func-
tion #(x) as follows: for each point x, from the (—L, L)
interval, if

X, = e + nl,

RND(®) = p(x,), (25)

then at x, a rectangular impulse of unit height and width
! is localized; if otherwise, then £(x) = 0 in the interval
(x, — 1/2,x, + 1/2). RND(n) is a random number uni-
formly distributed in the [0, pme(x)] interval and generated
for the pointx,. We assume that p(x) is normalized in such
away that ppn.(x) = 1. Thus ¢(x) is of the form (see Fig. 4)

t(x) = 2 rect(x - x"k) = 2 rect[ue__-{lkl).il ,
k l 3 l
(26)

where x,, are those x, for which inequality (25) is met.
For such sample functions the values #(x,) and #(x,) are
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Fig. 4. Example of the unipolar synchronous nonstationary
random process; e = /2, p(x,) = |x,|/L for x, = L and zero
otherwise.

chronous nonstationary random process for e and p(x,) as in
Fig. 4; 1 = 0.034 mm, L = 50 mm.

statistically independent (m # n). In Fig. 5 we show a
negative of the random absorbing screen whose rows are
the sample functions given by Eq. (26) multiplied by
rect(x/l). For each sample we put e = [/2 and p(x) =
|x|/L for |x] = L and zero otherwise.

To proceed further, we assume that / is small enough
that we may consider p(x) to be linear within any interval
of length /. First we calculate the average pupil function
t(x). To this end, we need to take into account the statis-
tics of the random variables e and RND. We calculate
t(x) = E[t(x)], using the concept of conditional mean
value®:

E[t(x;e,RND)] = E{Egxpe[t(x; e, RND) |e = ]}
= E{Ernpe[t(x;e0,RND) |e = eo]}, (27)

where E, and Egyxp denote averaging over e and RND, re-
spectively. We can choose e, in such a way that x will be
one of the points x,. If so, then

Ernolt(x; €0, RND) |e = e]

= 1- Prob{RND(n) = p(x = x,)}
+ 0 : Prob{RND(n) > p(x = x,)}

=1-p,) +0-[1- plx)]=px,). (28

Since e is uniformly distributed within the (~#/2,1/2) in-
terval, the cell to which point x belongs may be centered
(with equal probability) at any point in the interval (x —
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I/2,x + 1/2). Thus
Elt(x;e,RND)] = E [p(x — e)]

= % f rect(—‘l':)p(x — e)de

x+1/2

p)df = p(x). (29)

x=1/2
The above approximation holds owing to our assumption
on the linearity of p(x) in any interval of length /.

Comparison of Egs. (9) and (29) shows that the model
investigated in this subsection conserves the dynamics of
pupil function, whereas the low-density shot-noise model
does not.

Using Eqgs. (10) and (29), we obtain the average impulse
response

s L) = Lap(L ) gine 2
S(F) - Ang(Af)S‘nc(Af)

—— Z_AZ ) E:}_’ 1 l—y S @ P Q )
= /\f@(i\f>smc<)tf) % g’(v) 80

where M = [t(x)dx/l = L®(0)/l is the average number of
transparent cells.

To evaluate the variance of s(y), we first calculate
explicitly the first term on the right-hand side of
Eq. (15) above:

S 1\?2 2mri
[s(n)]? = ()Tf) H t(xl)t(xz)exp[——;?(xl - xz)y]dx1dx2

1)? 2mi
= (Xf) j R(x1,x2)exp[—/\ll(x1 - xz)y]dxldxz:
(31)

where R(x;, x5) is the autocorrelation function of the pro-
cess whose sample functions are those given above by
Eq. (26).

We calculate R(x, x2) following the method presented in
Ref. 14 for the random stationary checkerboard absorbing
screen. Some necessary modifications are introduced
owing to the lack of stationarity in our case. Since differ-
ent cells have statistically independent values of transmit-
tance, the autocorrelation function can be written as

R(x1, x2) = t(x1)t(x2)

— gl x; and x; are in
B [t(xl)t(xz)]PrOb{the same cell

x; and x, are in}_ 32)

+ t(x)t(x) Pmb{different cells

Here E™?[¢(x,)¢(x;)] denotes statistical average of the
product £(x,)#(x;) for such pairs (x;, x) for which x; and x,
belong to the same cell. Again, taking into account the
statistics of RND and e, we obtain the following for x; and
x5 in the same cell:

EN2[#(x,)¢(x2)]
= ERERA4(x,)t(xs); €0, RND|e = eo]}.  (33)
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Since

ER3[t(x1)t(x2); €0, RND| e = eq]

e p(252) v [1- p(252) ] 6o

we have
E™2[¢(x1)¢(x2)]
1 {1- (1292 (x1 + %, )d
= ——— —e e
I — (% — x9) -[1-(x1-x2)]/zp 2
x; + X
~ p<%> (85)

To calculate Eq. (33), we chose e in such a way that the
point (x; + x2)/2 coincided with a certain point x,. Then
we noticed that, if the points x; and x, were to be kept in
the same cell, e could vary only in the interval [—1/2 +
(g — x1), l/2 = (x2 — xl)]'

We have that

Prob{xl and x, are 1n} _ A<x1 - x2) , 36)

the same cell !

where A(x) =1 — |x| for |x| =1 and zero otherwise. It
follows that

R(xl, xz) =P<xl -; xz)A<xl —l- xz)
+ p(xl)p(xz)[l - A(@)] (87

Equations (31) and (37) yield

o= (g (52 (=)

9
X exp[——ﬂ-i(xl - xz)y]dxldxz

A
9
+f p(xl)p(xz)exp[—%(xl - xz)y]dxldxz
- f p(xl)p(xz)A<"‘ - x2>
2
X eXP[—T};(M - xz)y]dxldxz}- (38)

It follows from Egs. (15), (30), and (38) that

o) = (A_lf){ Jfp(r2)a(e5)

2
X exp_—Alfl(xl - xz)y_ dx,dx,
- J‘p(xl)dxxfp(xz)A<xl ; x2>
X -—?——( — Xg) -d . (39)
exp- A X1 — X2 y_ X2

We use the substitutions x; + x, = £ x; — x; = 7 in the
first double integral of Eg. (39). Then we apply the com-
mutative law of convolution, the convolution and autocor-
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relation theorems, and the condition L >> [ in the second
double integral of Eq. (39). The result is

o (3
ol o L) (2 ) ].
— [L? sinc ()\f)j@ </\f>d</\f>] (40)

According to the Parseval theorem,

Jor{2)or =2 f o

Thus we have

o i(y) = ()lf)zl sinc ( )[f plx)dx — f 2(x)dx]

(41)

Since 0 = p(x) =1 and, consequently, p(x) is always of
the same sign, the second law of the mean for integrals
enables us to rewrite Eq. (41) as

2
o (y) = (le) sine < f>(1 - B fp(x)dx, (42)

where B fulfills the inequality 0 < 8 = 1. The coefficient
B is equal to the ratio of average (over the pupil) intensity
transmittance to average amplitude transmittance:

1 L
f px)dx — f pAx)dx
2L J_p
ﬁ = = 1 2 . (43)
J.p(x)dx 5L j_Lp(x)dx

For the apodized pupil shown above in Fig. 2, we obtain
B = 2/3. For the uniform pupil whose transmittance
p(x) = b rect(x/2L), we have B = b. With [ [ p(x)dx =
M the variance is

2 ly
o) = (M’) sine (M)M -p= (Alf> M =B

(44
Equations (18), (30), and (44) yield the SNR
A—,qu Ly
SNR(y) = B)I/Z 9’( 3 f) (45)

For M = 64 and B = 2/3, Eq. (45) gives SNR(0) = 13.8.
It follows from Eqs. (23) and (45) that the use of a random
apodizer based on the checkerboard model yields higher
values of the SNR by the factor of (1 — g)™2 for N = M.

3. CONCLUSIONS

In Section 2 we presented two models of random binary
apodizers that can easily be fabricated in a two-step pro-
cess: (1) generation of a random binary pattern (nega-
tive) with a light plotter or a laser printer and (2) photo-
graphic reduction onto a high-resolution film (positive).
We have related the average pupil function, the average
AIR, and the SNR in the image of a point source to the
following parameters of the binary pattern: the width
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and the average number of transparent cells and the inte-
gral transmittance of the pupil. We have shown that the
smaller the size [ of the transparent cell, the better the
average transmittance of the randomly apodized pupil ap-
proximates the pupil function of an apodizer with con-
tinuously varying transmittance [Egs. (8) and (29) above]
and the better the average AIR approximates the corre-
sponding deterministic AIR [Egs. (13) and (30) above].
This means that, in order to generate the binary pattern,
we should work near the resolution limit of our printing
device. It should be pointed out that, irrespective of the
relationship between the width of the impulse A(x) and
the width of the cell in the checkerboard model, the corre-
sponding average pupil functions are equal up to a multi-
plicative constant resulting from the restriction given by
inequality (5). This constant may be equal to at most 0.5
[Eq. (9) above]. Thus, for the low-density shot-noise model
(realized by means of the two-step process mentioned
above), the value of the average pupil function varies
within the interval (0,0.5). If the negative binary pattern
were positive, the average pupil function would vary
within the interval (0.5,1). This means that the pupil
function would contain quite a strong constant component.
This can easily be seen from Fig. 3, in which negatives of
linearly apodized superresolving pupils (with shaded cen-
tral part) are shown.

‘We have shown that for [ << L, which should be the case
for a good random binary apodizer, the variance of the
AIR in practice does not depend on spatial coordinates
and is proportional to /2 and to the average number of
transparent cells [Egs. (17) and (44) above]. For the
checkerboard model the variance is also proportional to
the factor 1 — B. Therefore the larger the average trans-
mittance, the smaller the variance.

As regards the SNR that characterizes the AIR of a ran-
domly apodized imaging system, we have shown that this
parameter is proportional to the square root of the average
number of transparent cells (V or M) and to the modulus
of the normalized deterministic impulse response % (Ly/Af)
[Egs, (23) and (45) above]. As a result of its dependence
on P, the SNR depends strongly on y and achieves rela-
tively high values within the central peak and the low-
order sidelobes of the AIR. It should be stressed that, in
the case in which the width of the cells in the checkerboard
model and the width of the impulses A(x — x;) are equal
and A(x)! = 0.5 [inequality (5) above], the average number
of impulses is N = M /2. Moreover, in Eq. (45) there is a
factor of (1 — B)™“2 > 1 that is absent in Eq. (28). There-
fore the SNR that can be achieved for the checkerboard
model is higher than that for the shot-noise model by the
factor of V2(1 — B)~¥2, which for B = 1/2 is equal to 2
(assuming in both cases the same resolution limit of the
printing device, equal to 1/).

From our analysis it results that the stochastic nature
of the presented apodizers affects, first, the high-order
sidelobes of the AIR; therefore these apodizers can be use-
ful for typical applications of apodization, where the shape
of the central maximum is of importance.

The extension of our results to a two-dimensional model
is straightforward. In the two-dimensional case, M plays
the role of average total number of transparent cells. So a
high SNR can be obtained for a relatively small linear
dimension of the quadratic matrix of cells.
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Further improvement of the SNR could be made by the
application of methods that were developed for displaying
continuous-tone images on bilevel displays, where values
of transmittance (reflectance) in neighbor cells are usually
correlated (e.g., error-diffusion method).’® The results
obtained for the two relatively simple models presented in
this paper may serve as a lower limit of the SNR that
could be achieved with more sophisticated methods, which
are usually quite difficult to treat analytically.

We would like to point out that we are interested in
finding the method that would enable us to reach the
maximal resemblance (according to a certain criterion) of
moduli of Fourier spectra of binarized and continuous
apodizers and not the maximal visual resemblance of the
underlying apodizers themselves. Thus our task is close
to that of optimal binarization of computer-generated bi-
nary Fourier-transform holograms,’® in which the meth-
ods developed for the binarization of continuous-tone
images are widely used as well."”
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