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Off-axis focal shift for rotationally nonsymmetric screens
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We report on an analytical formulation for evaluating the amplitude distribution along any line directed toward the
geometrical focus of a spherical wave front that passes through a rotationally nonsymmetric diffracting screen.
Our formula consists of two factors. The first factor involves the one-dimensional Fourier transform of the

projection of the screen function onto the off-axis line.

The second factor depends on the inverse distance to the

screen and permits us to recognize the existence of focal shift along off-axis lines.

Nature sometimes uses optical systems with Fresnel
numbers less than 10, as, for example, in the case
of the fly lens.! Man-made optical systems may also
operate with low Fresnel numbers.? In both cases,
the axial irradiance distribution exhibits the focal-
shift effect.’® One may then consider the following:
For systems that operate with a low Fresnel num-
ber, is there a focal-shift effect along any arbitrarily
directed line toward the geometrical focus?

The goal of this Letter is to report on a compact
analytical formula for evaluating, along any line di-
rected toward the geometrical focus, the field that
is diffracted by a rotationally nonsymmetric screen
under converging spherical-wave illumination. The
formula consists of two factors. As in McCutchen’s
formalism,* the first factor involves a suitable one-
dimensional Fourier transform of the azimuthally av-
eraged amplitude transmittance of the screen around
the off-axis line. The second factor is the ampli-
tude representation of the inverse-square law and is
responsible for the focal-shift effect along the above-
mentioned straight lines.

For our present discussion, we start by consider-
ing a spherical monochromatic wave emerging from
a rotationally nonsymmetric screen and converging
toward the focal point F. According to the Huygens—
Fresnel principle, the amplitude of the diffracted field
at a point P in the vicinity of F is given by®
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where A (S) is the complex amplitude-transmittance
function of the screen stretched over the spherical
wave front W, of radius f, and s represents the
distance from a typical point Q of the spherical wave
front to the point P, as is depicted in Fig. 1.

Since we are interested in evaluating the diffracted
field along an arbitrary line directed toward the
paraxial focus, it is convenient to center our reference
cylindrical-coordinate system at point A, where the
selected off-axis line intersects the incoming spherical
wave front that fills the aperture. The notation is
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illustrated in Fig. 1. In this way, using the cosine
law, we can write

s?=f2+ 2% — 2fzcos(8) = % + 2% + 2f2[1 — (r/F)?)%
(2)
If we assume that r << f, then
2
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Hence, under the paraxial domain, Eq. (1) allows us
to express the amplitude distribution U,(2z) along the
straight line passing through points A and F as
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where A(r, ¢) is the amplitude transmittance of the
stretched screen as seen from point A, expressed
in polar coordinates, and rp., and rp;, represent,
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Fig. 1. Geometry used for diffraction investigation under
converging spherical-wave illumination. The origin of
the cylindrical coordinates, A, coincides with the point
where the off-axis line intersects the spherical wave front.
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respectively, the maximum and the minimum radial
extent of A(r, ¢). Of course, if the off-axis line passes
through the screen, then ry;, = 0. It is clear that a
change in the selection of the straight line passing
through F involves a change in the shape of the
function A(r, ¢) and, consequently, as Eq. (4) reveals,
a change in the profile of the off-axis amplitude
distribution.

Now, it is convenient to make the following change
of variable:

o7 U P)=Alr, ). (5)

2f
We recognize that ¢ represents the distance from
pole A to the projection onto the off-axis line of the
points of the stretched screen at radius r, as is shown
in Fig. 1. By use of the above change of variable,
Eq. (4) can be rewritten as
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If we perform the integration with respect to ¢, we
obtain
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where #,(¢) denotes the azimuthal average of (¢, ¢)
over a ring located at ¢{. In other words, #{,({) is
the projection of the function A(r,¢) onto the co-
ordinate axis. Equation (7) is valid for any line
directed toward the paraxial focus, and it contains
as a particular case the equation for describing the
amplitude distribution along the optical axis.

From Eq. (7) it is clear that the complex ampli-
tude distribution along each of the above off-axis
lines consists of two terms. The first term involves
the one-dimensional Fourier transform of #,(¢). The
scale factor of this transformation is 2/A(f + z). The
amplitude of the second term varies as 1/(f + 2)
and is responsible for the lost of symmetry in the
irradiance distribution I4(2) = |U4(2)I?, as we discuss
next.

The Fresnel number of the noncentered aperture
function, i.e., the number of Fresnel zones that are
covered by the aperture function centered at point A
when viewed from the paraxial focus, is Ny = (Fmax® —
Poin2)/Af = 2({max — Lun)/A. It is apparent that this
parameter represents the length of the projection
of the stretched screen onto the off-axis line and is
measured in units of half a wavelength. In the case
of large Fresnel numbers, i.e., if the axial length of
the aperture, Spax — {uim, 18 many wavelengths of
light, then the integral over ¢ is negligible unless
z is small enough that it can be ignored when it
appears in f -+ z. In this case, the expression for
the amplitude along any line is the one-dimensional

Fourier-transform relation of McCutchen,* and there
is no focal shift. However, when the Fresnel number
is small, z cannot be ignored, and the factor 1/(f +
2) outside the integral shifts the irradiance peak
to negative values of z ie., toward the aperture,
resulting in the focal-shift effect.

It is interesting to point out that, as point A
moves from the optical axis, the length of the
projection onto the off-axis line is increased and
the integral in Eq. (7) is then shorter. Although the
shape of the function s, changes, in general the
corresponding off-axis irradiance will have a sharper
maximum, which is less displaced by the factor 1/(f +
2) outside the integral. So we expect that the focal
shift will be reduced.

In order to illustrate our result, from Eq. (7) we
numerically evaluate the normalized irradiance dis-
tribution along different axes for a clear circular
aperture with radius B. We start by assessing, as in
the usual case, the normalized irradiance distribution
along the optical axis. In this case, the mathemati-
cal expression for the maximum axial length of the
screen ¢ and for the Fresnel number of the cen-
tered apertured N are {y = R?/2f and N = R%/Af,
respectively, and the function {,(¢) has a rectangular
profile, as is depicted by the solid line in Fig. 2.
The corresponding normalized axial irradiance dis-
tribution is plotted as the solid line in Fig. 3. In
this plot we have assumed that N = 2 and that the
normalization is such that I,(z = 0) = 1.

Next, the profile of the function 4,({) for various
off-axis lines, i.e., for various values of the param-
eter « in Fig. 1, is shown by the dashed curves in
Fig. 2. We recognize that, as point A moves from
the optical axis, the extension of the function «,(¢)
is gradually increased. The corresponding off-axis
irradiance distributions are plotted as the dashed
curves in Fig. 3. We note from Fig. 3 that the off-
axis point of maximum irradiance still remains with-
out coinciding with the paraxial focal point. As we
predicted, the amount of focal shift decreases as
the angle « increases. This happens because the
Fresnel number becomes larger.
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Fig. 2. Profile of the azimuthally averaged transmit-
tance #,(¢) of a circular aperture versus the normalized
axial coordinate, {/{y = (r/R)?, for four different posi-
tions of the origin of the polar coordinates.
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Fig. 3. Normalized irradiance distribution for a clear
circular aperture, with N = 2, along four different lines
directed toward the geometrical focus.

Summarizing, we have described a novel formalism
for analytically evaluating, along off-axis straight
lines passing through the focus, the irradiance dis-
tribution produced by a rotationally nonsymmetric
diffracting screen under converging spherical-wave
illumination. The cornerstone of our approach is the
proper selection of the reference coordinate system.

We applied our formalism to recognize that a circular
aperture is able to produce off-axis focal shift for low
Fresnel numbers. To illustrate our result, we have
shown some numerically evaluated examples.
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