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Abstract — Six digital-halitoning procedures. including one algorithm proposed by us, are compared
to determine which one is best suited to binarization of a parabolic super-resolving pupil filter, The
procedures we deal with include iterative, error-difiusion, error-convergence, and 1-pixel algorithms.
We carry out a numerically simulated experiment in which an object that consists of either one point
source or two coherent point sources 15 imaged in a 47 imaging system with either a continuous
super-resolving parabolic filter or one of its six different binary versions. The performance of binary
filters is examined in terms of two parameters: the resemblance of their amplitude impulse response
(AIR) to the AIR of the original continuous filter. as well as the two-point Sparrow resolution criterion.
We found that the best performance in terms of both figures of merit is achieved with the rilter gen-
erated by means of one-weight error diffusion when the weight is randomly positioned and the algo-

rithm is processed on a serpentine raster,
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1 Introduction

The performance of a linear coherent imaging system can
be deseribed either by means of its amplitude impulse re-
sponse (AIR) or by the Fourier transform of this magnitude,
i.e., the coherent transfer function (CTF). In an optical ex
periment, we can directly shape the CTF by placing a filter
in the pupil plane of the svstem, and in this way we can
control the IR, The design of pupil-plane filters (e.g., apo-
dizing filters, super-resolving filters, deblurring filters, ete.)
was extensivelv studied in the past.'” Nonetheless, the
manufacture of continuous-tone pupil filters has remained
a difficult task. An attractive solution of this problem is to
fabricate pupil filters in binarv form by means of high-reso-
lution computercontrolled light plotters. Pupil filters binar-
ized by some halftoning methods were successfully applied
in line-scan image generators to shape read-and-write
beams® and in confocal microscopy to provide high spatial
resolution.” Therefore, the mfluence of the binarization
procedure on the performance of a bimary filter should be
examined.

When binarization methods are used for ereation of
the illusion of continuous-tone pictures (halftoning), the re-
sulting binarv image 15 usually examined both in the spatial
domain and in the Fourier domain. In the spaltial domuain,
subjective visual eriteria are applied. In the Fourier domain,
isotropy, regularity, and extension of the spectrum of a uni
formly gray object rendered with a given halftoning method
are examined.” On the contrarv. when binarization methods
are nsed to implement the binary version of a pupil filter,
the performance of the binarv mask is evaluated only in the
spatial frequency domain, where the Founier spectrum of its

amplitude transmittance, i.e., its AIR, is compared with the
Fourier spectrum of the original continuous-tone filter,

A general analytic approach that enables us to predict
how a binanization procedure affects the spectrum of a grav-
tone filter is available for only three classes of halftone pro-
cedures. The first class consists of all the techniques based
on the periodie carrier concept.® %% The use of these meth-
ads for binarization of filters would strongly alfect the
resemblance between AlRs of binarized and continuous-
tone pupil filters. This is because irrespective of the nature
of the continuous-tone filter spectrum. the spectrum of the
corresponding binary filter is periodic. Thus, those tech-
niques will not be addressed here.

The second class consists of eeneralized determimistic
{without stochastic perturbations™) error-diffusion (1) pro-
cedures. A comprehensive analvsis of the spectra of hinar-
ized images and diffractive optical elements obtained by
means ol these algorithms was presented in terms of filter
theory by Weisshach and Wyrowski.”

The third class consists of procedures based on the
random-carrier coneept. A techmque which belongs to this
class is, for example, that presented by Mitsa and Parker'
in which the halftoning is achieved by a pixelwise compari-
son of the grav-scale image to a blue-noise mask. In 4 recent
work, we have presented a rigorous unalvtic deseription of
dithering with a white-noise mask.!'' We showed that the
statistical average of the AIR of u pupil filter binarized with
this method is approximately equal to the AtR of the corre-
sponding continuous-tone filter. provided that the number
of transparent cells within the pupil is sufficiently large.
Dithering with white noise has been the unique digital-
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halftoning method successtullv applied to binarization of
the amplitude transmittance of pupil filters.*

The aim of this paper was to find the binarization
method which would vield, as closely as possible, similar
spectra for a continuous-tone parabolic super-resolving pu-
pil filter and its corresponding binary version. Since ap-
proximately 80% of the AIR energy is concentrated in its
central maximum and low-order side lobes. we are looking
for a procedure which would not affect the low-frequency
part of the spectrum of the filter transmittance. There exist
binarization methods whose actual implementation is well-
adapted to our needs. This favorable situation results from
the fact that in order to meet subjective criteria of human
understanding of images, many halftone procedures have
been optimized to give an isotropic blue-noise shape to the
spectrum of binarization noise. The blue-noise spectrum of
binarization noise means that the low-frequency part of the
spectrum of a continuous-tone element remains practically
unaffected when the binarization procedure is executed,
which, by coincidence, is exactly our aim. The blue-noise
shape of the spectrum is an inherent feature of all the ED
procedures. [t can also be achieved in some iterative half-
tone procedures in which the shape of a fixed part of the
spectrum is directly controlled.

Since an analytical description of the influence of digi-
:al halftoning on the Fourier spectrum is available only for
deterministic ED and for dithering with random carriers, we
perform here a numerical experiment to compare the per-
[ormance of the six binary versions of a super-resolving
parabolic pupil-plane filter generated with six repre-
sentative halftoning algorithms. A similar comparison study
was done by Billotet-Hoffmann and Bryngdahl with respect
to sine-wave pupils but only qualitative results were given,'?
We examine all the binary filters for the resemblance of
their spectra to that of the continuous-tone filter and for the
two-point resolution evaluated in terms of the Sparrow cri-
terion.

In this way we, in fact, evaluate different halftoning
techniques to choose one which best suits our needs. We use
the Sparrow resolution criterion as a merit function for the
following reasons. Any fabrication method can be evaluated
directly and indirectly. By direct evaluation we mean the
measurement of important parameters of the fubricated ob-
jeet  in the present case, the Fourier spectrum of the digi-
tally halftoned pupil filter. By indirect evaluation. we mean
the evaluation of the result that is achieved by using the
object — here, the super-resolution that can be achieved
with subsequent binary filters. [n our opinion, a complete
investigation should include both kinds of evaluation, it pos-
sible. There are areas, ¢.z., pharmacy, where such an ap-
proach is quite common. There the therapeutic result is
cven more important than the physical and chemical prop-
crties of a medication.

The results of direct and indirect evaluation should, in
principle, coincide or at least be highly correlated. The co-
incidence confirms that our understanding of a physical
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situation is right and that we use an adequate mathematical
model to describe it.

The lack of correlation stimulates further investiga-
tion to get better insight into the phenomena involved. We
shall see that for a low degree of resemblance between cor-
responding spectra, there is no evident correlation between
both of the merit functions we used. A possible explanation
of this will be given in Section 4.

1.1 Some definitions
1.1.1  Pupil filter

A pupil filter is an absorbing or phase-shifting transparency
placed on the pupil, usually the exit pupil, of an imaging
system to properly shape the pupil function of the svstem.
In the special case of the 4f imaging svstem of Fig. 7, the
filter is placed in the Fourner plane (the w,v plane), which
does not coincide with either the entrance or exit pupil;
these are at minus and plus infinitv, respectively. Pupil fil-
ters are spatial-frequency filters. Thev are neither color nor
holographie filters. Color filters or holographic filters some-
times occupy pupil-filter positions (pseudocoloring, pattern
recognition), but in such cases they are not referred to as
pupil filters. Sometimes pupil filters occupy extrapupilar
pus;il:ions.13

1.1.2  The Sparrow criterion

Due to diffraction, the image of a point source produced by
any real imaging system is not a bright point; it has a finite,
non-zero size. The amplitude distribution within such a dif-
fraction spot (i.e., the amplitude impulse response of a svs-
tem, also referred to as the point-spread function) is
Fourier-conjugated with the pupil function of the svstem.
The pupil function characterizes the svstem in the spatial-
frequency domain and is equal to the properly normalized
amplitude distribution. which appears just behind the exit
pupil when the object to be imaged is a point source. By
placing a transparency in the exit-pupl plane, i.e.. a pupil
filter, we can modily the pupil function and therefore intlu-
ence the point-spread function.

The question arises: what is the minimum separation
2 (see Fig. T) between two coherent point sources such
that two overlapping point-spread [unctions could still be
recognized as the image of a two-point object. The answer
depends on the criterion we apply. According to the Spar-
row resolution criterion, the lower limit of 2b is that for
which the second derivative of the resulting intensity distri-
bution vanishes at the midpoint between geometrical
{Gaussian) images of both sources. For an aberration-free
correctly focused system with a clear (no filter) circular pu-
pil, 2b = 4.600 in dimensionless normalized units. 1

1.1.3

[t we properly atteruate the low-frequency transmission of
the imaging system by means of a pupil filter (such manipu-
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lations pertormed in the pupil are known as apodization).
we can overcome the above limit to obtain 2b < 4.600. This
15 referred to as super-resolution in the sense of the Sparrow
criterion.

1.1.4  Parabolic super-resolving filter

A parabolic super-resolving filter is a rotationallv symmetric
pupil filter whose amplitude transmission is a p.tmholu.
function of the radial coordinate [Eq. (S)]. Such a filter
climinates the zero frequency and considerably attennates
low frequencies. The frequencies closest to the cutoff fre-
queney remain virtually unaffected.

1.1.5  Blue noise

Blue noise (terminology introduced in Ref. 3) is high-fre-
quency white noise devoid of low-frequency energy.

2 Description of the aigorithms

A large number of two-dimensional digital-halftoning tech-
niques which are good blue-noise generators have been re-
ported in the literature.” Here we limit our interest to five
of them representing different approaches. We also test the
dithering with white noise. which. as the unique digital-
halftoning procedure recommended until now for binariza-
tion of pupil filters. can be considered a reference point. In
this way. we study the performance of the following binari-
zation methods:

i) Dithering with white noise.!!

(b} Ew with one weight which is randomly positioned.?

ic) epwith Floyd and Steinberg error filter perturbed
by an uniformly distributed bipolar additive white
noise.”

() ep with the Flovd and Steinberg filter perturbed
by a properly scaled output of a symmetrical hard-
clipper. with the noise generated in (¢} used as the
input.

te) Multiresolution error-convergence algorithm
MECA) with random choice of testing pixels.'”

ifl Iterative Fourier-transform .lleonrhm (1FTA), 1847

Algorithm (a) is completely described in the litera-
ture. whereas algorithms (b, (¢), (e), and () contain some
free purameters that should be specified. Finally, ulgorithm
d) proposed here is a modification of (c!. It was supposed
to improve the performance of its original version.

For versions (b}, (¢}, und (d). of the ED method, the
algorithms are processed pixel by pixel on a serpentine ras-
ter (see Fig. 1).

1n the case of £D with one randomly positioned weight
lalgorithm (b}]. we select the position of the weight with
equal probability between two candidate locations, immedi-
ately below and preceding the filter origin (Fig. 2).

In the case of ED with Floyd and Steinberg filter per-
turbed by white noise [algorithm (cl], we start with pairing

bosss

B

A 4
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v

FIGURE 1 — Serpentine raster path.

original Flovd and Steinberg weights of comparable value.
We form two pairs (1/16. 3/16) and (5/1. 7/16). Then for
cach pixel two statistically independent random variables ¥
and yare generated. The random variable % perturbs the
(1/16. 3/16) pair and W perturbs the other pair. These ran-
dom variables have the following uniform probability den-
sity functions:

s Leyel
py={ 16 16 1

0 othenvise

and

e 2gys2 .
Pylyl= 16 16 3)
0 otherwise.

Next, we multiplv  and W by b and b’, respectively, where
b and b belong to the [0,1] interval. Then by and by per-
turb the corresponding pairs:

L3
\ 16] | TS __b’(i &
and
2. = ( b X 4
{161 ]_)E )wﬁ-]w

The scaling tactors b and b” express the maximum percent-
age of the smaller weight in the pair affected by noise. In
our experiment. b = b" = 0.5. Thus, in every sampled point
of the pupil, we use the error filter shown in Fig. 3.

In our modification of the above binarization algo-
rithm [i.e., in algorithm (d}]. the random variable ¢ takes on

o | E

1

FIGURE 2 — Two one-weight error filters used when the row of pixels
Is processed from left to right. We <elect, with equal probabiiity, one or
them to diffuse the error from the origin position represented by a solid
circle,
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FIGURE 3 — Error filter used when the classical weights of Floyd Ian[i
Steinberg are perturbed by a uniformly distributed bipolar additive white
noise.
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FIGURE 4 — Error filters used in the algorithm (d) for rows of pixels
processed from left to right.

with equal probability only two values. —1/16 and 1/16,
whereas the variable y takes on the values —5/16 and 5/16.
Again we assume that 3 and y are statistically independent,
so that in every point of the pupil filter we use with equal
probability one of the four error filters presented in'Fig. 4.
The MECA, algorithm (e), can be considered a sym-
metrical ED algorithm processed in parallel. Thus, it is sup-
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FIGURE 5 — Pixel positions tested for possible change of the binary
assignment, Pixels are marked with odd numbers 2n - 1, where n is the
pyramid level and (2n— 1) % (2n = 1] is the size of the window used for
calculation of the weighted average error. The shaded area corresponds
10 a quadrant of the clear pupil used in our simulation. When algorithm
{e) was executed, some of these pixel positions were randomly shifted
according to the probability distribution given by Eq. (5).
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TABLE 1 — Error thresholds used in the algorithm (e) to determine
whether a pixel binary assignment should be changed.

Pyramid level
3 4
64/255 36/255 10:255 | 37255

(5]
o

posed to be free from directional hysteresis, which is typical
for all ED methods processed sequentially. A distinctive fea-
ture of this algorithm is its pvramidal structure. At the first
pyramid level, the original continuous-tone image is hard-
clipped pixel by pixel to produce the binary image. At higher
levels, the binarized image is compared with the continu-
ous-tone image over a window of pixels for calculation of a
weighted averaged error. Then, the binary assignment is
changed if the weighted averaged error exceeds a threshold
value that can be determined analytically or adjusted experi-
mentally. In the comparison, we center the window at the
selected binarized pixels (see Fig. 5). The theoretical and
experimental threshold values do not coincide, and they
both depend on the pvramid level. The number and distri-
bution of tested pixels and the size of the window depend on
the pyramid level. In our calculation we use five pyramid
levels, and at each level we test a subset of pixels and apply
the windows proposed by Peli for the basic version of MECA
modified by pseudorandom perturbations [algorithm (e)].'®
The threshold values that we use are presented in Table 1.
The basic version of the multiresolution error-conver-
gence algorithm has the drawback that when it renders
some gray levels it vields false contours and directional pat-
terns (textures). To reduce these effects, we follow Peli’s
idea of including pseudorandom noise in the choice of pixels
to be tested at each pyramid level. In this case, the prob-
ability of shifting a tested point from its central position to
any of eight neighboring positions is given by the matrix

1/60 2/15 1/60
M=|1/15 8§/15 1/15]. (5)
1/60 2/15 1/60

From Eq. (5) almost 50% of the points to be tested are
randomly shifted from the positions they occupy in the de-
terministic version of the algorithm.

In the 1FTA [algorithm (f)], the binary transmittance is
approached stepwise. We start with the continuous-tone
transmittance t{u.v) and execute the iterative procedure ac-
cording to the flow chart presented in Fig. 6. The operators
U and I represent the constraints imposed on ¢;{uv) and on
the Fourier transform of Utj(u,v}, which we denote Tj{x.yl,
The operators are defined as follows:

f | e ip
0, |rj(u,r,)[$f, j=012,.,59

Fﬁn&i>1—#w (6)

'-TL”"’PJ- (wuv)=4 1,
p=12,.46

[ It i (u, U)l, otherwise
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FIGURE 6 — Flow chart for the iterative Fourier-transform algorithm

used (o calculate binary filters

and

Bi|T(x.y) v\‘p{j nrl_[['fl. {x, _!;.-J}, Lyles

otherwise,

T (x,y) =<
5 T {x.y),

where T(x.y) is the Fourter transform of ¢(x.y) and B, is the
proportionality constant that minimizes the quadratic devia-
tion of T, from T over the window S.'* The area S, in which
T(xy) is substituted by BIT(x.y)l expli arg[T)(x.y)]1]. is
bounded by the second zero ring in T(x.y). The parameter
¢'Plincreases by 0.01 everv 10 iterations within the range
[0.05, 0.50]. In order to evaluate the direct and inverse
Fourier transtorms, we use the fast Fourier transform (FFT),
For this purpose, binary filters, with diameters of 23 pixels
each, are placed in the 128 x 128 matrix of pixels.
Summarizing, procedure (a) has been chosen as a ref-
erence point because, of all the procedures applied to bi-
narization of pupil functions, it has given the best results
until now. Algorithms (b)=(d) have nearly blue-noise char-

AY.

FIGURE 7 — The configuration assumed in our numerical experiment.

FIGURE 8 — Binarv filters obtained with (al={f} algorithms.

acteristics. Algorithm (e} has a slightlv poorer blue-noise
spectrum and is more sensitive to edge effects, but on the
other hand it is free from directional hvsteresis. Finally, al-
gorithm (f) has been chosen because it was desioned to ob-
tain a high degree of resemblance between the spectrum of
i 1'l"[lti”u()“.\'-lilnt_' l‘[t‘!llt.‘nl '-l“l.l ti“lt l’]i. its ]!iIlLlI‘\. VEersion,
which is, of course, our aim here.

We test neither the original ED method nor the basie
version of the MECA because thev do not venerate blue
noise as well as their randomly perturbed versions.

3 Numerical experiment

In the first stage of our experiment. six binary filters are
generated on a rectangular grid. The binarv filters are sup-
posed to substitute a super-resolving parabolic continuous-
tone filter whose amplitude transmittance is

tiu,t) = circ| ——— | ————, 8)

FIGURE 9 — Squared moduii of the AIRs of binary filters. In the
ipper-leit quadrants the |AIRI= of a continuous-tone rilter are shown
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FIGURE 10 — Cross sections of intensity distributions in the image of a point source obtained with the binary pupil filters shown in Fig. 8 (logarithmic
=cale). We present the intensity distribution along semi-axes Ox and Oy to reveal possible deviations from radial symmetry. The dotted line corresponds

to Fix,y and solid line to aGix,y).

where (u,v) are the spatial coordinates in the filter plane and
R is the radius of the filter. The coherent transfer function
of the 4f imaging svstem with such a filter in the Fourier
plane (Fig. 7) is equal to

2

A=t s P

3

e )

where (W,v) are the spatial-frequency coordinates in the
Fourier plane and A is the wavelength of the coherent illu-
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minating beam. At the cutoff frequency of the system, p, =
R/Mf, the parabolic transfer function P(u,v) = 1. The super-
resolving binary filters obtained with (a}—(I) algorithms are
shown in Fig. 8. It is seen that the onlv filter that preserves
the symmetry of the clear pupil (built with squared cells, as
shown in Fig. 3) is that obtained with the 1FTA, which is the
unique parallel-processed deterministic algorithm tested
here,

In the second stage, we calculate the intensity distri-
butions in the images of a point source obtained in the 4f
imaging system, placing subsequent binarv filters in the



Fourier plane. That is. we calculate the squared modulus of
the a1 of each binary filter. The intensity distributions are
shown in Fig. 9, where they are qualitatively compared with
that obtained for the gravtone filter.

Quantitative comparison is shown in Figs. 10{a}=10(f),
where the moduli of corresponding AlRs are drawn in loga-
rithmic scale.

In order to evaluate the resemblance of the AIRs of
binary filters to the AIR of their gravtone counterpart. we
use the signal-to-noise ratio (5NR) as proposed by Weissbach
and Wyrowski’:

J:f[F(:r.y)]zrfx dy
= 10

SNR=- 5

”[F{x.y) —oGlx.y J]'r!:c dy
A

where coefficient

I Fix.nGlx.y) dxdy
a=2_ 5 (n
|| [Glx. ] dxdly
A

maximizes the SNR. In our caleulations, Flx.y) is the squared
modulus of the AIR of the continuous-tone filter und Gx.yy)
is IAIRI? of the binary one. The squared area A is centered
at the optical uxis and its side is equal to the diameter of the
second zero ring of T(x.y!. The A1Rs of binary filters are cal-
culated with the FFT. where the diameter of the filter and
the size of matrix of pixels are the same as those used in the
iterative Fourier-transform algorithm. We use the SNR de-
fined in Egs. (10) and (11) as a merit function which orders
all algorithms according to the degree of resemblance be-
tween the AIR of corresponding binary filters and that of the
continuous one. In Fig. 10 it is seen that over the area A, the
distributions aG(x.y) coincide almost perfectly with Fixy).
Therefore, &' can be considered a ratio between the light
cfficiency of the binary pupil filter and that of the underly-

TABLE 2 — The SNR, resolution limit, and relative light efticiency for
ap-if) algorithms,

Two-point
resolution
Ik Relative light
deviation  efficiency
Algonithm SNR SNR GSNR Ab [trgdh
b 3775 1756 573 +.294 0.531
[=0.001!
i1l 4370 1931 370 4.323 0.825
[0,028]
(3 3429 1708 308 4.323 0431
10.025]
i) 2387 528 203 4.332 1,551
10.037]
L] 1420 — — 1,964 1.165
10.069]
a 944 246 150 4.320 0n.797
[0.025]

ing graytone filter. By the light efficiency we mean here the
fraction of incident energy which falls into the signal win-
dow A,

The values of the SNR and o} are presented in Table
2. In the case of algorithms that use random-number gener-
ators [(a)—{el]. we generated ensembles consisting of 100
sample filters. In Table 2, we show the sNR of the best sam-
ple selected from the ensemble. which is the veryv sample
shown in Fig. 8. In Table 2, we also present the average
signal-to-noise ratio, SNR, and the standard deviation of S\E,
Osxp, that characterize the entire ensemble.

Finally, the performance of the binarv filters is exam-
ined in terms of the two-point Sparrow resolution criterion
for coherent illumination. To this end we performed a nu-
merical experiment in which two coherent point sources are
located in the object plane of the imaging svstem shown in
Fig. 7. The points are spaced 2D apart. Then for each filter,
we caleulate the minimum value of 2 allowed by the Spar-
row criterion (see Table 2). In Table 2. the deviations Ab of
the value 2b from 20,, where 26, = 4.295 is the resolution
limit ealeulated for the continuous parabolic filter. are also
presented.

4  Conclusions

From the wide scope of existing digital-halftoning tech-
niques, we have selected a subset of procedures (which be-
long to lour different categories!, which are well adapted to
the purpose of binarizing continuous-tone pupil filters.
Next. in order to evaluate the resemblance of the AIRs of
binary filters to the AIR of their continuous-tone counter-
part, we have defined a merit function, the SNR. Then. after
a numerical simulation, we have obtained the following re-
sults,

The resemblance between the spectrum of a continu-
ous super-resolving parabolic pupil filter and that of its bi-
nary version strongly depends on the binarization algorithm.
For six filters generated with six different algorithms ana-
Ivzed here, the $NR, which is the quantitative measure of
this resemblance, varies from 949 to 5773. The resemblance
achieved for pupil filters generated with randomly per-
turbed ED algorithms processed on u serpentine raster is
higher than that for dithering with white noise and the 1FTA,
The best realization (chosen from the ensemble of 100 sam-
ples) was generated with only one randomly positioned
weight [algorithm (b)]. This algorithm is characterized by
the highest standard deviation of sXR. Therefore. the prob-
ability that one will generate the binary filter whose SNR
considerably exceeds the average SNR, which for this algo-
rithm is quite good, is relatively high. The best two, from the
point of view of the SNR [algorithms (b and ()], in fact
belong to the sume class of ED with random perturbations.
This is because the error filter with one randomly posi-
tioned weight is equivalent to a two-weight filter whose
weights are 100% perturbed. Namely, we have one pair of
weights (172, 1/2) which is perturbed as follows:
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1 1 1
_E)—r[g+bx,§—bx]; (12)

—_——
19| =

in this case. ¥ takes on with equal probabilitv the values 0.5
and 0.5, whereas b = 1.

All the filters we have generated demonstrate super-
resolving properties (for the clear pupil. 2b = 4.600). For
the algorithm (b). the value 2b = 4.294 coincides almost per-
fectly with the corresponding theoretical value 2b, = 4.295.
From Table 2, the correlation between the $NR and the de-
viation Ab is rather weak, at least within the range of the SNR
we deal with. Perhaps the explanation of this is as follows.
The binary filters are not rotationally symmetric. so the two-
point resolution that can be obtained depends on the angu-
lar orientation of the filter with respect to the direction
determined by the straight line which passes through both
point sources. On the other hand, the SNR involves integra-
tion: hence. it averages angular effects. When the SNR is
high, there are no essential differences between favorable
and unfavorable (from the point of view of resolution) angu-
lar orientation of the filter.

From the analvsis of data in the outermost right-hand
column of Table 2, it is shown that binarization may lead to
improvement of light efficiency. It is seen that the light ef-
fici~ncy of the binary pupil generated by the IFTA is higher
than that of the graytone filter by about 17%. However, our
opinion is that the light-efficiency ratio o™ can be used as a
merit function only when comparing binarization methods
with similar values of SNR.

In order to find the procedure which would maximize
our merit function, we tested five already known and one
new procedure proposed by us [algorithm (d)]. We showed
that the new procedure, being a modification of (¢), vields a
higher value of SNR than the original version. Moreover, the
algorithm (d) is characterized by the highest SNT. Neverthe-
less, the highest values of SNR, which are six times higher
than that for the technique considered best until now (a),
are achieved for the error diffusion with one randomly po-
sitioned weight. We believe that further improvements of
binarization techniques and in particular of the IFTA and
MECA are possible. From Ref. 17, if we use the 1FTA, the
convergence of partially binarized patterns ‘W™t (u.v), and
the form of binary limit distribution UY3%; (u) depend
on the topology of a given problem and the initial distribu-
tion to(u,v). Therefore, some manipulations are still possi-
ble. Regarding the MECA, a systematic study of this
procedure could lead to the further improvement, but a
general analytical approach is needed. Although MECA can
be considered a type of ED procedure, the Weissbach and
Wyrowski approach can't be applied here because it is valid
only for algorithms processed sequentially. whereas the
MECA is processed in parallel.
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