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Abstract

Two novel algorithms for the binarization of continuous rotationally symmetric real and positive pupil filters are presented.
Both algorithms are based on the one-dimensional error diffusion concept. In our numerical experiment an original gray-tone
apodizer is substituted by a set of transparent and opaque concentric annular zones, Depending on the algorithm the resulting
binary mask consists of either equal width or equal arca zones. The diffractive behavior of binary filters is evaluated. It is shown
that the filter with equal width zones gives Fraunhofer diffraction pattern more similar to that of the original gray-tone apodizer

than that with equal area zones, assuming in both cases the same resolution limit of device used to print both filters.

1. Introduction

The amplitude transmittance of pupil filters is usu-
ally a continuous rotationally symmetric real func-
tion [1]. The fabrication of filters with such a trans-
mittance is still troublesome. It requires sophisticated
techniques, like for example photographic registra-
tion or vacuum deposition through rotating masks
[ 1,2] or fabrication of a zero-power doublet with one
absorbing component [3]. An alternative solution is
an approximation of the continuous-tone filter with
a binary filter which can be printed, for example, by
a digital plotter [4]. The proper choice of binariza-
tion algorithm is required to minimize the influence
of binarization noise on diffractive behavior of bi-
nary filter and in particular on central lobes of its am-
plitude impulse response (AIR ).

Existing digital halftoning algorithms are usually
executed on rectangular or hexagonal grid of pixels
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[5]. Therefore, when we deal with the binarization
of a rotationally symmetric filter using such grids, an-
other kind of degradation of its AIR appears, namely,
the loss of rotational symmetry. Three binarization
methods which preserve the rotational symmetry were
proposed by Hegedus [6]. Depending on the method,
the pupil area was divided into concentric annular
zones of either equal area or equal width or into an-
nular zones with the adapted width. Then, each equal-
area zone (EAZ) and equal-width zone (EWZ) was
divided into three annular subzones, the inner and
the outer opaque, and the middle transparent. The
inner and outer radii of transparent annulus were de-
termined by the constraint of transmitting the same
energy as the corresponding zone of the continuous-
tone pupil filter. In adaptive method binary value of
transmittance was changed from 1 to 0 or vice versa
as to maintain the integral transmittance of the al-
ready binarized part of filter approximately equal to
the integral transmittance of the same part of gray-
tone filter. Since in each case outer and inner radii of
binary zones are strictly determined by the corre-
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sponding set of equations, these methods required, in
principle, arbitrary high resolution of printing device
(even for a small number of zones), unless the annuli
were plotted on a greatly enlarged scale. The main
drawbacks of the latter method are resolution, preci-
sion and speed of the plotter, accuracy of the photo-
reduction steps, and the lengthy fabrication due to
multistep process.

In this paper we present two binarization methods
which are based on the extensively studied classical
version of error diffusion (ED) algorithm [7].
Whereas the generalized ED algorithm is particularly
well suited to control the spectral distribution of bi-
narization noise over all the spatial frequency plane,
its original version, both one-dimensional (1D) and
two-dimensional (2D), has a blue noise characteris-
tic, i.e. the binarization noise contains only high fre-
quency components [8]. Therefore, a strong resem-
blance between the low frequency spectra of binary
filter and its gray-tone counterpart is supposed to be
preserved when the classical ED is used as the binar-
ization method. In our modification of the ED algo-
rithm, binary values of transmittance are assigned to
concentric annular zones of either equal area or equal
width, so that the rotational symmetry of pupil filter

and its AIR are preserved. Unlike in the case of He-

gedus algorithms, we assign a binary value to the
whole EAZ or EWZ because our zones are not sub-
divided. In this way the width of the zone (in EWZ
case) or the width of the finest zone (in EAZ case)
can be directly imposed by the resolution limit of
printing device — the input parameter of our method.
Therefore the binary filters whose transmittance is
calculated with the algorithms we present here, can
be plotted directly to scale by a high-precision laser
writer [9], thus eliminating photoreduction steps.

In our numerical experiment we evaluate the re-
semblance of the AIRs of EAZ and EWZ binary
apodizing filters to the AIR of the corresponding gray-
tone filter for different resolution limits of printing
device. In the case of the EWZ apodizer we also ex-
amine the influence of the direction of execution of
ED algorithm (from the pupil center to the edge or
vice versa) on its diffractive behavior.

2. One-dimensional error-diffusion algorithm

The ED algorithm was originally introduced by
Floyd and Steinberg [ 7], for the binarization of pic-
tures. The general description of this algorithm can
be found elsewhere (see for example Ref. [3]). In
our work we are interested in its 1D version with only
one weight, which can be described in the following
way. From a given normalized continuous function
f(x) the normalized sampled distribution f(i), i=0,
.., N—1, is obtained, which we will refer to as nor-
malized input function. The first input value f(0) is
compared with a threshold ¢, and the binary output
is set to 1 or 0, depending on whether f{0) is larger
or smaller than #,. In general f, can be a function of i
[10]. In our formulation we put #,=0.5. The hard-
clip operation results in an error term e(0)=
b(0)—f(0), being £(0) the first binary assignment.
This error term is then multiplied by a weighting fac-
tor w(1) and subtracted from the next input value
f(1). The modified input value f{1)—w(1)e(0) is
then compared with the threshold to give the next
output value b(1). The coefficient w(1) indicates the
fraction of the error ¢(0) transferred to f(1). Binary
value assigned to ith sample can be written as

b(i) =step [f(i) —w(i)e(i—1)—0.5], (1)

where step [ ] function is defined as zero when its
argument is negative and 1 if otherwise. The algo-
rithm binarizes and corrects sequentially all the sam-
ples of the input function. However, the error ob-
tained in the last sample, e(N—1), remains not
corrected.

In the original 1D ED method it is usual to put
w(#)=1. We will show here that this may lead to im-
proper results if 1D ED is applied to binarization of
2D pupil functions with rotational symmetry.

3. Binarization of two-dimensional functions

The 1D ED algorithm can be applied to binarize
2D functions when used with respect to rotationally
symmetric functions, i.e. functions whose value de-
pends only on the radial coordinate. In such a case
the resulting binary output consists of a set of con-
centric transparent and opaque annular zones. How-
ever some modifications of the ED algorithm are
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necessary for obtaining an optimal binarization, that
is for obtaining a high degree of similarity between
the spectra of continuous function and its binary ver-
sion. Let us show it in the following reasoning in
which we compare the diffractive behavior of a 2D
binary filter obtained with either 2D ED or 1D ED
algorithm, assuming in both cases rotational sym-
metry of continuous-tone pupil filter.

When a 2D continuous function is binarized by the
2D ED algorithm, a matrix of transparent and opaque
rectangular cells is obtained. The contribution, E;, of
an arbitrary rectangular cell, >, of the binary filter
to the field amplitude at the axial point of its Fraun-
hofer diffraction pattern is, apart from a constant
factor,

E,=b(i.j) | [ avay=b(.1) 5.5, )

Zif

where b(i, j) is the binary transmittance assigned to
the corresponding reactangular cell, whereas S (1 7)
represents the area of the cell.

On the other hand, if the 2D rotationally symmet-
ric filter is binarized by the 1D ED algorithm, the
contribution, E;, of the ith annular binary zone to the
central point of the Fraunhofer pattern is

Fit+l

E,=2nb(i) | rdr=b(i)n(rk,—r?)=b(i)S(i),

i=0,1,2,..,N—1, (3)

where r; is the inner radius of ith annular zone
(ro=0), b(i) is the binary value of amplitude trans-
mittance assigned to the annular zone, and S(7) rep-
resents the area of the zone. Thus, the value of E; is
proportional to the volume under the binary func-
tion within the ith annular zone.

Note that in Cartesian coordinates all the binary
cells are rectangular and usually they have the same
area. Then, their relative contribution to the integral
transmittance depends only on the assigned binary
value, b(i, j). However, in polar coordinates the con-
tribution of an annular zone depends not only on the
assigned binary value, b(i), but also on the differ-
ence (nrZ,, —ar?), i.e. on the area of the zone which
varies proportionally to (r,,+r;) when (r;y,—1;) =
const (EWZ). Thus, when the 1D ED algorithm with
w(i)=1 is applied directly to binarization of rota-

tionally symmetric filters it can lead to improper re-
sults, because the error obtained in one zone is then
spread over a zone whose area may be different from
one it originated. To overcome this problem we pro-
pose either to divide the pupil into annular zones of
equal arca, or 1o weight the error, e(i—1), to be dif-
fused to the ith zone by the coefficient

S(i—=1) ri—ri.

3 ) (4)

v="5Gy T h—r

which is equal to the ratio of the area of already bi-
narized zone and that under binarization.

3.1. Annuli of equal widih

In order to binarize the amplitude transmittance,
T(r), of a rotationally symmetric pupil filter by means
of 1D ED algorithm, the natural way of division of
the area of the pupil into binary cells is by dividing it
into a set of concentric EWZs. Let us assume that our
plotter is able to draw N EWZs within the unit-radius
pupil. Thus, the inner radius of the ith annular zone
is
r=Ii/N. (5)

The width of the each zone, 4,, is equal to 1/N
whereas the area of the ith zone is

2i+1
—r)=n" (6)

S(i)=n(ris,

As is stated above, the influence of an arbitrary ith
zone on the integral transmittance depends on the
volume of the zone. Then, the sampling must be per-
formed at the circle

o1 i+ (i+1)?
=5 lf, €]

that divides the zone into two parts of equal area.

In this sampling it is tacitly assumed that with
change of variables {=7r%, the amplitude transmit-
tance T(r) is approximately linear as a function of {
within the interval [, {;,,]. where {;={(r;). If this
assumption is not a good approximation, the sam-
pling should be done at 7; such that

Fid1

21 j T(r) rdr. (8)

T(ﬁ)=m
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Along the circle of the radius 7; the function T'(r) takes
on its mean value over the ith annular zone [r;, #i41].
In practice we do not look for 7; defined by Eq. (8),
although it exists according to the first low of the mean
for integrals. We simply assign 7'(7;) given by Eq. (8)
to the /th annular zone.

Taking into account Egs. (4) and (6), the diffu-
sion weight can be rewritten as

21

wli)=35—7- (9)

3.1.1. Direction of the binarization process

When the binarization with EWZs is dealt with, the
direction of the binarization process is supposed to
affect the result. If the procedure starts from i =0, i.e.
from the center of the filter, the error obtained at the
last sample, i=N— |, remains uncorrected. Note that
the outermost annulus has the biggest area, hence the
influence of its noncorrected error on the integral
transmittance can be significant. In order to mini-
mize the noncorrected error, we propose 10 process
the algorithm in the opposite direction, that is start-
ing from i=N— 1. In such a case the diffusion weight,
w’ (1), is defined as

SGE+1) 1

WD="sh Wi

(10)

As we will verify in a numerical experiment, the
diffractive behavior of binary filters obtained in this
way is better than that of filters obtained by the or-
dinary direction of binarization.

3.2. Annuli of equal area

Another approach to binarization of rotationally
symmetric pupil filters is that in which diffusion
weights given by Eq. (4) are identically equal to
unity. We can meet this condition if we divide the
pupil area into M annular EAZs. The inner radius of
ith annulus is equal to

ri=i/M, (11)

where again the unit radius of the pupil is assumed.
The area of each annulus is constant and ecqual to

S =n(ri —ri)=n/M. (12)

Hence, w(i)=1 during the whole binarization pro-

cess. The sampling of 7°(#) must be done at

- 2i+1
= 2m (13)

The comment that we made after Eq. (8) is valid also
in this case. The width 4, of the finest, i.e. the outer-
mosl zone is

Aa=1—ry_ =1-J1-1/M. (14)

From the condition 4, = it results that

(15)

Thus, with the printing device which is able to print
N EWZs we can print at most N2/ (2N—1) EAZs. If
we realize that for M= 50 the zone number M—2 (the
zone next to the finest one) is wider than 44 by only
one percent, it will be clear that in order to draw such
an EAZ mask we must use a digital plotter character-
1zed by a high relation of the smallest marking size to
the accuracy with which it can position the output.

There is a close correspondence between 1D ED

“'with EAZs and the classical version of 1D ED algo-

rithm. These algorithms became formally identical if
the pupil function is represented as a function of {
instead of r. In fact, it results from Eqgs. (11) and (13)
that with this mapping the graph of the pupil func-
tion consists of equal-width segments and sampling
values used in ED algorithm are taken in the central
point of each segment.

4. Numerical experiment

To study the performance of proposed algorithms
we carried out a computer experiment in which an
apodizing pupil was binarized. As a pupil function
we chose a truncated Bessel function of the first kind,
zero order [1]

T(r)=J(nr), r<l,
=0, f"")‘*l, {16)

where y; =2.405 is the first positive root of the equa-
tion Jy() =0. Among all the apodizing pupil func-
tions which provide the same energy flux through the
pupil, that of Eq. (16) minimizes the second mo-
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ment of the intensity distribution in the Fraunhofer
diffraction pattern [11].

The AIRs of calculated binary filters were com-
puted and compared with those of continuous-tone
apodizer in terms of signal to noise ratio (SNR ):

SNR(K)= J [F(u,v)]1? dude

-1
X(J [F(u,v)—G(u,v;K]]zdudu) N (17)

where F(u, v) represents the intensity distribution in
the Fraunhofer diffraction pattern of the continuous-
tone function, G(u, v; K) the intensity distribution
in the Fraunhofer diffraction pattern of the binary
function whose domain consists of K annular cells,
and A4 an area in the Fourier domain. In our experi-
ment 4 was a circle centered on the optical axis and
extended up to the second minimum of continuous-
tone filter Fraunhofer diffraction pattern.

The results of numerical experiments are shown in
Figs. 1 and 2. Fig. | presents SNR versus number of
annuli constituting an EWZ filter for the two direc-
tions of binarization process. The figure shows that
binary filters generated with the EWZ algorithm pro-
cessed from the edge to the center of the pupil (square
symbols) provide, in general, higher values of SNR.
Fig. 2 illustrates the SNR (M) dependence in the EAZ
case. In both cases the SNR is high even for binary
filters consisting of a few annuli.
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Fig. 1. SNR versus number of annuli for binary filters obtained
with EWZ algorithm processed from the edge to the center of the
pupil (square symbols), and in the opposite direction (star
symbols).
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Fig. 2. SNR versus number of annuli for binary filters obtained
with EAZ algorithm.
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Fig. 3. Comparison of the SNRs obtained with EWZ algorithm
(square symbols), and with EAZ algorithm (plus symbols), as-
suming in both cases the same resolution of printing device. Up-
per scale corresponds to EAZ filters.

To compare the performance of both proposed al-
gorithms we combine Fig. 1 (square symbols only)

~and Fig. 2 with changed horizontal scale. It results

from Eq. (15) that direct comparison is inadequate
when the resolution of the printing device is taken
into account. The SNR obtained with a filter of N
EWZs should be compared with the SNR of a filter
consisting of M=N?/(2N—1) EAZs. According to
this criterion Fig. 3 was prepared, in which EWZ fil-
ters show, in gencral, better diffraction behavior than
EAZ ones.

It is seen in Figs. 1 and 2 that in general the SNR
increases as the number of zones increases. However,
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neither the SNR (V) dependence for EWZ subdivi-
sion nor the SNR (M) dependence for EAZ subdivi-
sion are monotonic. Some “privileged” numbers of
zones appear for which SNR is considerably higher
than for slightly smaller or larger N or M. A simple
explanation of this phenomenon can be given in the
{ space for the EAZ case as follows. One of the aims
of ED procedure when applied to binarization of pupil
filters is to maintain unchanged the integral trans-
mittance of the original gray-tone filter. The integral
transmittance is equal to the value which the Fourier
transform of the pupil function takes on at the origin
of the Fourier plane. In this way the central part of
the spectrum of binary elements remains unaffected
by the binarization process [8]. The integral trans-
mittance of the pupil used in our experiment is equal
to 2x7 ' J,(x;) =0.4243n~4/3, where J, is a Bessel
function of the first kind, first order [1]. This inte-
gral transmittance is equal to the area under the con-
tinuous curve Jo(x;+/C{/7) (and also to the volume
under the central lobe of Jo(,7) ), whose binary ver-
sion is supposed to be built up with M equal boxes of
the area n/M each (sec Fig.5¢). The numbers M
which meet best the following equation

(RIS
NE

or, equivalently,
n/M=0.4243 , (19)

where # is the number of clear zones, are particularly
well suited for this task. In fact n/M=3/7=6/14=
...=0.4286 are the best approximate solutions of Eq.
(18). It is seen in Fig. 2 that for M=7, 14, 21, ... the
SNR reaches its local maxima. The absolute maxi-
mum does not belong to this series because we cal-
culate the SNR in the area 4 which covers more than
the central part of the main lobe, for which the above
reasoning is strictly valid.

In Fig. 4 we present a selected EWZ filter, obtained
with relatively low resolution (52 zones), which has
a high SNR. Note that the presence of an opaque zone
close to the pupil center, where original continuous-
tone filter has transmittance close to 1, is related to
the direction of the binarization process: it compen-
sates the error made in the outer part of the filter.

In Fig. 5 a selected EAZ filter, obtained with only

n, 1<n<M (18)-.
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Fig. 4. EWZ binary version of zero-order Bessel filter. ED algo-
rithm executed over 52 annular cells: (a) one-dimensional rep-
resentation (dashed-line curve represents the amplitude trans-
mittance of continuous-tone filter); (b) actual two-dimensional
representation.

44 zones, is shown. Also this filter has a high SNR
value.

The intensity profiles obtained in the Fraunhofer
diffraction region of corresponding filters are shown
in Fig. 6. The logarithmic scale is used to show the
differences between diffraction patterns of the binary
and gray-tone filters which appear, first of all, in the
side-lobe region. The differences in 4 region are neg-
ligible, which explains the high SNR obtained for
these filters.

5. Conclusions

Two new algorithms for binarization of rotation-
ally symmetric apodizers based on one-dimensional
(1D) error diffusion (ED) algorithm have been pre-
sented. The binary filters obtained with these algo-
rithms consist of concentric transparent and opaque
annuli of either equal width or equal area. Owing to
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Fig. 5. EAZ binary version of zero-order Bessel filter consisting
of 44 annuli: (a) one-dimensional representation; (b) actual two-
dimensional representation; (c) {-space representation (dashed-
line curves represent the amplitude transmittance of continuous-
tone filter).

the nature of the proposed algorithms, the binary fil-
ters present the following features.
(1) The rotational symmetry of the pupil filter and
its amplitude impulse response (AIR) are preserved.
(ii) The low frequency spectrum of binary filters
remains nearly unaffected by binarization noise. This
was proved in terms of signal to noise ratio (SNR)
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Fig. 6. Cross section of the intensity distribution in the Fraun-
hofer diffraction pattern of : (a) EWZ binary filter consisting of
52 annuli; (b) EAZ binary filter consisting of 44 annuli. Dashed-
line curve represents the diffraction pattern of continuous-tone
filter.

being the quantitative measure of the resemblance
between their AIRs and the AIR of the original gray-
tone filter.

(iii) The equal-width zone (EWZ) filters are, in
general, characterized by higher values of SNR than
those obtained with the other method tested in this
work. The advantage of these filters is even more ev-
ident if the algorithm is processed starting from the
sample closest to the edge of the pupil.

(iv) In order to fabricate the resulting binary mask
with a printing device, the required resolution is much
lower than that required by other binarization meth-
ods which divide the pupil into similar number of
either equal width or equal area annular zones. The
printing devices whose positional accuracy is much
higher than the smallest spot size, as for example most
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digital plotters, are better suited for this task than laser
printers or liquid-crystal devices.

We have also found that the SNR does not increase
monotonically as the number of zones of binary filter
increases. As a consequence of that, we can state that
on designing of binary rotationally symmetric pupil
filters, the requirement of spatial resolution as high
as possible sometimes should be slightly relaxed in
order to provide a good match between the integral
transmittance of the filter and the number of its bi-
nary zones.

We would like to outline some differences between
the binary masks obtained by using the amplitude
transmittance of a Fresnel zone plate as a binary car-
rier of pupil function [12], and those obtained by
means of equal-area zone (EAZ) version of 1D ED
algorithm presented in this work. The mask which
belongs to the former class can be considered a bi-
nary Gabor hologram of a two-dimensional (2D)
object whose amplitude transmittance is propor-
tional to the AIR in question. Such a hologram is
coded by a phase-detour method and is referred to as
modulated Fresnel zone plate. When illuminated with
a point source it reproduces at each focal plane of the
zone plate (except for that of zero order) the ampli-
tude distribution of the recorded object plus bias
formed by spherical waves converging towards or di-
verging from other foci. On the contrary, our EAZ
binary filter reproduces in the central part of the fo-
cal plane of the illuminating converging spherical
wave the Fourier transform of its gray-tone counter-
part without bias. The main advantage offered by
modulated zone plates is the possibility to code both
real and complex pupil functions.

Finally we would like to remark that with the
change of variables { = nr? the amplitude distribution
along the optical axis is proportional to the 1D Four-
ier transform of the amplitude transmittance of the
filter [13,14]. The above and the well established
theory of spectral properties of binary patterns ob-
tained with unit-weight 1D ED algorithm [8,15],

make our EAZ filters particularly well suited to con-
trol the axial diffractional behavior of the optical
system.
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