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Abstract

We present a set of annular binary pupil filters for increasing the axial resolving capacity of imaging systems. The filters
consist of two transparent annuli of the same area. It is shown that by changing the area of the transparent regions it is possible
to obtain a tunable reduction of the width of the central lobe of the axial point spread function of the imaging system. However,
this reduction is accompanied by a severe increase of the strength of secondary lobes, what can make these filters not very useful
when used in conventional imaging systems. That is why we propose to usc these filters for apodizing confocal microscopy
systems. It is shown that in this case an important reduction is achieved in the volume of the central lobe of the three-dimensional

point spread function.

1. Introduction

The intensity distribution in the three-dimensional
(3D) image of a point source provided by an imaging
system, i.e., the intensity point spread function (PSF)
of the system, is governed by the finite extent and the
amplitude transmission of the exit pupil as well as the
wavelength of the radiation. Several efforts have been
addressed to modify the characteristics of this PSF in
order to improve the quality of the image. In this sense,
the use of nonuniform transmission filters to produce
apodization [1,2] or superresolution [1-4] on the
transverse intensity PSF, i.e., on the intensity distribu-
tion at the image plane, is well known.

More recently, the effects of nonuniform transmis-
sion filters in the axial PSF have been studied. In this
sensc, certain filters have been proposed for achieving
a high focal depth [3,6], for reducing the influence of
spherical aberrations [ 7], for obtaining zero-axial irra-
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diance for optical alignment [8], or even for removing
the energy from the axial point of the image plane with
the aim of achieving high precision focusing [9].

The design of filters for achieving superresolution
along the optical axis is of great importance in 3D
imaging because the narrower the central lobe of the
axial response, the higher the optical-sectioning capac-
ity of the system. However, not too much attention has
been paid to the design of this kind of filters [10,11].

The aim of this paper is to design a set of annular
binary filters for increasing at will the axial resolution
capacity of imaging systems. The binary filters are
composed by two transparent annuli of the same area,
and we show that the lower the area of the annuli, the
narrower the width of the central lobe of the axial inten-
sity PSF. The use of these filters permits to reduce the
width of the central lobe of the axial intensity PSF up
to a factor 1/2. In the limit cases, this reduction is
accompanied by a big enlargement of secondary lobes,
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which can be detrimental in conventional imaging. We
also prove that the use of these filters does not affect,
up to the second-order approximation, the width of the
central lobe of the transverse intensity PSF.

In a second step we propose to use the above filters
for improving the imaging properties of confocal
microscopes. Several proposals have been made in
order to modify the intensity PSF of such systems [ 12—
18]. In this context we show that the use of the proposed
annular binary filters permits to obtain a drastic
improvement of the sectioning capacity of the system,
while keeping the transverse resolution.

In Section 2, we discuss the influence of the pupil
filter transmittance on the transverse and axial super-
resolving capacity of an imaging system. In Section 3,
we apply the previous formalism to design a set of
binary filters for achieving axial superresolution.
Finally, in Section 4 we show that the use of these filters
in a confocal microscopy system permits to reduce the
volume of the central lobe of the 3D intensity PSE.

2. Basic theory

Let us start by considering the amplitude PSF, p(v, -

W, ), of an aberration- free imaging system thatis apod-
ized by a radially-symmetric pupil function p(p), p
being the normalized radial coordinate. For this case

plv, Wy) =2 J plprexp( i'_)fn‘WQ,}p))

0
XJo(2mup)pdp . (1)

In Eq. (1), v=ryr/ Af stands for the radial variation in
the image volume, ry being the maximum radial extent
of the pupil and f'the focal length of the system, whereas
W, specifies the amount of defocus measured in units
of wavelengih. Finally, J, denotes the Bessel function
of the first kind and zero order.

Next, we particularize Eq. (1) for two cases of spe-
cial interest: the amplitude distribution along the optical
axis, and at the image plane. For the optical axis we set
v=0inEq. (1) to give

p(0, Wyg) =2 f Fp)exp(—2aWap?pdp.  (2)
0

Now, it is possible to convert Eq. (2) into a one-dimen-
sional (1D) Fourier transform by using the next geo-
metrical mapping:

{=p*=05, q()=p(p). (3)

If we substitute Eq. (3) into Eq. (2), then we have
that, except for an irrelevant phase factor, the axial
amplitude PSF can be described by

0.5

p0, Way) =

—10.5

q(Oexp(—12nWyl)di . (4)

[t is apparent from Eq. (4) that the complex-amplitude
distribution along the optical axis is related with the
mapped amplitude transmittance of the pupil, g({), by
a 1D Fourier transformation.

On the other hand, for the image plane case, W, =0,
we have that

1

plo, 0)=2 J plp)Jo(2amop)pdp . (5)

0

Then, the two-dimensional (2D) amplitude distribu-
tion in the image plane 1s given by the Hankel transform
of zero order of the apodizing function. The geomet-
rical transformation of Eq. (3) can also be applied to
Eq. (3). In this case, the transverse amplitude PSF can
be rewritten as

0.5
p(v, 0) = J (DT (2mn L +0.5)dL . (6)
0.5

Now, we can state that both the transverse and the
axial amplitude PSF of an apodized imaging system
are governed by the same function, g({), but through
two different types of transformation.

As we are interested in the design of filters for
increasing the resolving capacity of an optical system
along the optical axis, but taking also into account the
effects in the transverse plane, it is convenient (o intro-
duce the axial and transverse resolution gains defined
by Sheppard and Hegedus [11], which evaluate the
fall-off in intensity in the focal region of an apodized
imaging system in comparison with that corresponding
to a nonapodized one.

Following a reasoning similar to that of Ref. [11]
(see appendix), we obtain from Eqgs. (4) and (6) that,
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within the second-order approximation, the variation
of the normalized intensity in the focal region of an
apodized system is given by:
(a) the image plane, see Eq. {A.8),
(o, O)
1(0, 0)
5 myy
I—'rr’(1+2—)u'

My,

(v, 0) =

=1—7*(1+20)0%, (7)
(b) the optical axis, see Eq. (A.4),

10, W,
140, Wy — L0 Woo)

(0, 0)
=1—47 (m'))h _ e IW -
A My
| — 470 Wi, . (8)

In Egs. (7) and (8). the coefficient

0.5

m, J @(OHrAE, n=0,1,2, (9)

5

represents the nth moment of g(¢), £ is the mean
abscissa, and o the standard derivation.

Then, the transverse, Gy, and the axial, (GG, resolu
tion gains, with respect o the second-order intensity
lall-off corresponding the clear circular aperture, may
be defined as

142,
Gy - (10a)
[+2Z,
o,
Go= 2 (10b)
,

<

where subscript ¢ corresponds to the nonapodized cir-
cular pupil, whereas subscript a corresponds (o the
apodized pupil.

The merit functions defined in Egs. (10) represent
the ratio between the width of the second-order inten-
sity fall-off provided by the nonapodized circular aper-
ture and that provided by the apodized one. Therefore,
when a superresolving effect is achieved in one of both
directions, transverse or axial, the value of the corre-
sponding gain is bigger than unity. In the opposite case,

the gain is smaller than unity. Thus, it is apparent from
these equations that an axial superresolving effect is
obtained when o, > o, whereas for obtaining trans-
verse superresolution it is necessary that £, > Z..

For the clear circular pupil, g({) =1, the value of
the moments are

mo=1, m=0 and m,=1/12. (11a)

So, the values of the mean abscissa and the standard
deviation are, respectively,

L=0, and a.=V1/12 . (11b)
Thus, the transverse and axial gains can be rewritten as
Ge=V1+2L,, and Go=V120,. (12)

The merit functions in Eq. (12) are equivalent to those
defined by Sheppard and Hegedus, except for a square
root operation.

Finally, we would like to highlight that, aside from
minor details, the above developed basic theory is Tully
based on Rel. [ 11].

3. Annular binary filters design

As 1t 1s pointed out in Section 2, for obtaining an
axial superresolving effect, we need that the standard
deviation of the mapped function of the apodized pupil
15 bigger than that corresponding to the nonapodized
circular aperture, Then, 1t 1s ¢lear that this effect can be
achieved by a radially-symmetric pupil filter provided
that the value of its corresponding mapped function,
g(£), in the vicinity of {= — 0.5 and /= + 0.5 is much
bigger than at £= 0. These conditions are fulfilled by a
wide set of pupil functions as, for example, that char-
acterized by the mapped function g(¢) =4¢*, which
corresponds under the geometrical mapping of Eq. (3)
to the well-known radially-symmetric pupil filter of the
form p(p) =4p*—4p*+1 |11,19]. However, the
practical implementation of such a type of purely
absorbing filters, in which the amplitude transmittance
varies as a monotonic function of the radial coordinate,
is not an easy task. One way to face this question is to
develop and optimize the binarization method which
better suits our apodization problem [12,20,21].

These difficulties can be overcome by designing fil-
ters whose amplitude (ransmittance is binary. Accord-
ing to this requirement, we propose the set of annular
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Fig. 1. Three members of the family of axially superresolving pupil
filters of Eq. (13): (a) mapped function g({) for £=0.33, 0.66, and
0.99; (b) actual 2D representation.

binary filters characterized by the mapped function
q({) =rect({) —rect({/w) , with O<p<l. (13)

Any member of the above family of filters consists of
a circular aperture obstructed by an annular mask, in
such way that the two transparent annuli of the filter
have the same area. This fact is illustrated in Fig. 1,
where we have represented, for three different values
of the obscuration-ratio parameter u, the function g({)
and its corresponding 2D version j(p).

The on-axis intensity distribution, I{ 0, Wa) = | p(0,
Wg) |, generated by these filters is given by the square
modulus of the 1D Fourier integral of Eq. (4), i.e.,

1(0, Wag) = |sinc(Wy) — psine(uWa) |* . (14)

In Fig. 2 we have represented, by dashed curves, the
normalized version of Eq. (14), In(0, Wy) =1(0,
Wao) /1(0, 0), corresponding to the filters shown in Fig.
1. For comparison, the axial intensity PSF correspond-
ing to the nonapodized circular pupil (CP), is also
plotted (solid curve).

From Figs. 1 and 2 it is quite apparent that as the
value of the parameter g increases, the area of the
transparent annuli of the filter decreases and the central
lobe of the normalized axial intensity distribution grad-
ually narrows. In the limit case, in which the value of
o approaches unity, the filter consists on an infinitely
narrow annulus and a pinhole, and it provides the max-
imum axial resclution attainable with purely absorbing
pupil filters. Note that this set of binary filters repro-
duces, in a certain way, the Young experiment, but
along the optical axis, and permits, by a continuous
variation of parameter g, to control between certain
limits the axial resolution of the system.

In order to investigate the superresolving properties
of the proposed filters, not only along the optical axis
but also in the image plane, we may use the axial and
transverse resolution gains defined in Eq. (12). For
this purpose, we first calculate the different moments
of our annular binary filters. We obtain

me=1—pm, m=0, and my=(1—pu*/12,
(15a)

and then the beam abscissa and the standard deviation
are

L=0, and o,=V(ut+p+1)/12, (15b)

respectively, Therefore, the transverse and the axial
resolution gains provided by our annular binary filters
are, respectively,

Gr=1, and G,=Vp?+p+1. (16)

In Fig. 3, we have plotted the variation of both gain
coefficients as a function of the parameter . It is appar-

M
=
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Fig. 2. Normalized axial intensity PSF for the filters in Fig. 1 and for

the nonapodized circular pupil (CP).
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Fig. 3. Transverse, G, and axial, G,, resolution gain versus the
obscuration-ratio parameter ji.

enl from this figure that, within the second-order
approximation, the transverse resolution of a system
apodized by one of our filters remains unchanged, i.e.,
the central lobe of the transverse PSF does not spread.
In fact, any pupil filter represented by an even mapped
function is neutral in the transverse direction [11]. On
the contrary, the axial resolution gradually increase as
the parameter u approaches unity.

The combination of both results allows us to recog-
nize that the use of these annular binary filters permits
to obtain a 3D PSF in which the area of the central lobe
can be gradually decreased. Thus, in this sense, it can
be stated that these filters have the ability of increasing
the 3D resolution of an optical system or, equivalently,
that they provide a 3D superresolution effect.

4. Application to confocal microscopy

The use of the proposed filters for increasing the axial
resolution of a conventional imaging system presents
certain drawbacks. On the one hand, because of the
introduction of an annular stop , part of the energy is
obstructed providing a light throughput much lower
than with a circular pupil. At the same time, the nar-
rowness of the central lobe of the axial PSF is accom-
panied by a severe increasing of the strength of the
secondary lobes. These drawbacks can make these fil-
ters not very useful when used in conventional imaging
systems.

However, if a confocal scanning microscope archi-
tecture is used [22], these collateral effects are over-
come to a certain extent. The principle of the confocal

scanning microscope is schematically illustrated in Fig.
4. In this setup, the light from a point source probes a
small region of the object. Then, the transmitted light
is collected and focused onto a point detector. Here, the
3D intensity PSF of the system depends on the prop-
erties of both the illuminating and the collecting sys-
tem, and it is given by [23]

I(v, Wag) = |p1 (v, Wag) pa(v, Wag) |2, (17

where p, (v, Wyy) and p,(v, Wyy) are the amplitude
PSFs corresponding to the pupil functions 7, and 7.,
respectively (see Fig. 4).

From Eq. (17) it is clear that the intensity PSF is
given by the product of two independent functions. This
multiplicative character can be exploited for reducing
the collateral effects of our superresolving filters. This
is achieved by combining one of these filters, used for
example as the collecting system pupil, and a clear
circular aperture, used as the illuminating-system pupil.

In this case, the secondary lobes of the axial PSF of
the superresolving filter, p,(0, Wy,), are drastically
reduced when multiplied by the axial PSF of the cir-

Humimating system Collecting system
A

Point I ~ Point

| Smm—

source _ v - detector
B, Scanned B,
object

Fig. 4. Scheme of a confocal imaging system.
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Fig. 5. Normalized axial inwensity PSF of a confocal microscope
whose collecting system incorporates one of the filters depicted in
Fig. 1. The solid curve corresponds to the nonapodized system. In
this plot we assume that both illuminating and collecting pupils have
the same outermost radius,
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Fig. 6. Theoretical contours of equal normalized intensity {isophotes) in a meridional plane, when the pupil of the collecting system is: {a)
unapodized; (b} apodized with the binary filter of ;. =0.33; (c) apodized with the binary filter of 5 =0.66; and (d) apodized with the binary

filter of £=0.99.

cular aperture, p, (0, W,,). This effect is quite apparent
when comparing Fig. 5 with Fig. 2.

Furthermore, as it was noted in Section 3, the central
lobe of the transverse PSF of an optical system does
not spread when the pupil of the system is apodized
with one of our filters. Then, it follows that the trans-
verse PSF of a confocal system remains unaffected
when, for instance, the collecting-system pupil is apod-
ized with one of these binary filters. Thus, we can
conclude that the volume of the central lobe of the 3D
PSF of the confocal system is highly reduced, as it is
clearly shown by the isophote diagrams of Fig. 6. This
fact is of great importance in confocal microscopy
because it permits to increase the sectioning properties

of such systems, while keeping their transverse reso-
lution capacity.

Finally, due to the special nature of the confocal
microscope architecture, the loss of energy produced
by the interposition of an annular obstruction in the
collecting-system pupil was no relevant importance
because in such systems the source power can be arbi-
trarily modified, between certain limits.

5. Conclusions
We have designed a new set of annular binary filters,

which have the ability of tuning the axial resolution of
an imaging formation system, simply by changing the
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value of the obscuration-ratio parameter u. We have
also pointed out that the use of these filters does not
affect, up to the second-order approximation, the trans-
verse resolution of the system.

Finally, we have recognized that when these filters
are applied for apodizing a confocal microscope it is
possible to obtain a drastic reduction of the area of the
central lobe of the 3D PSF. This 3D superresclution
effect is of great importance for improving the quality
of the image.
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Appendix

The kernel of the Fourier transform in Eq. (4) can
be expanded as a power series as
) * (—i27Wae)"
exp( —i27Wyl) = T (ZR2mWad)"
n!

n=0

(A1)

Then, Eq. (4) can be rewritten in terms of the different
moments, #,, of the function g({) as

= —127Woe)"
p(0, W) = 3 —

n=0

m, . (A2)
n!

Now, for small distances from the paraxial focus, and
assuming that the pupil function is real, the axial inten-
sity PSF can be written as

I(0, Wyo) = |p(0, Wag) |?
= mi+ 407 (m? — mgmy) W2, . (A.3)

Finally, dividing Eq. (A.3) by I(0, 0) we obtain that
the normalized axial intensity varies in the form

1(0, Wy)
1(0, 0)

2
=1+47" [(m—”;) - %:I W3
0

=1-47* W} .

Ig(0, Wy} =

(A4)

For the case of the transverse PSF, we use the for-
mula of the power expansion of the zero-order Bessel
function [24], iLe.,

Jo(2mV+05) = f; (_1); (mVE+0.5)% .
n=10

(n!)
(A.5)

Then, Eq. (6) can be rewritten in terms of the moments

of g({) as
p(o, 0)=my+ 7 (my/2+m)) >+ - . (A.6)

So, the transverse intensity PSF, up to the second-order
approximation, is

I(v, 0y =mj— 7 (mg — 2mgm, ), (A7)
whose normalized version reads
Iy, 0) ( m:‘)
(v, 0)= —2—==1-7m(1+2 |
0= 7670 mo)
=1-7(1+2D0%. (A.8)
References

[1] P. Jacquinot and B. Rozien-Dossier, Apodisation, in: Progress
in optics, Vol. 11T, ed. E. Wolf (North-Holland, Amsterdam,
1964).

[2] C.S.Chung and H.H. Hopkins, J. Mod. Optics 35 {1988) 1485.

[3] G R. Boyer, Appl. Optics 15 (1976) 387.

[4] B.R. Frieden, Opt. Acta 16 (1969) 795.

[5] 1. Ojeda-Castafieda and L.R. Berriel-Valdés, Optics Lett. 13
(1988) 183.

6] J. Ojeda-Castafieda, J.C. Escalera, and M.J. Yzuel, Optics
Comm. 114 (1995) 189.

[ 7] 1. Ojeda-Castafieda, P. Andrés and A. Diaz, I. Opt. Soc. Am.
A5 (1988) 1233.

[ 8] 1. Ojeda-Castafieda, P. Andrés and M. Martinez-Corral, Appl.
Optics 31 (1992) 4600.

[3] M. Martinez-Corral, P. Andrés and J. Ojeda-Castafieda, Appl.
Optics 33 (1994) 2223,

[10] J. Tsujiuchi, Correction of optical images by compensation of
aberrations by spatial frequency filtering, in: Progress in optics,
Vol. II, ed. E. Wolf (North-Holland, Amsterdam, 1963).

[11] CLR. Sheppard and Z.S. Hegedus, J. Opt. Soc. Am. A 5
(1988) 643.

[12] Z.S. Hegedus, Opt. Acta 32 (1985) 815.

[13] Z.S. Hegedus and V. Sarafis, J. Opt. Soc. Am. A3 (1986)
1892.

[14] 1.1. Cox and C.J.R. Sheppard, J. Opt. Soc. Am. A 3 (1586)
1152,

[15] T. Wilson and S.J. Hewlett, J. Mod. Optics 37 (1990) 2025.

[16] C.LR. Sheppard and M. Gu, Optics Comm. 84 (1991) 7.



498 M. Martinez-Corral et al. / Optics Communications 119 (1993) 491498

[171 1. Grochmalicki, E.R. Pike, J.G. Walker, M. Bertero, P.
Boccacci and R.E. Davies, J. Opt. Soc. Am. A 10 (1993) 1074.

[18] §.W. Hell, S. Lindik and E.H.K. Stelzer, I. Mod. Optics 41
(1994) 675.

[19] MLI. Yzuel, J.C. Escalera and J. Campos, Appl. Optics 29
(1990) 1631.

[20] §. Weissbach and F. Wyrowski, Appl. Optics 31 (1992) 2518.

[21] M. Kowalczyk, M. Martinez-Corral, T. Cichocki and P.
Andrés, Optics Comm. 14 (1995) 211.

[22] T. Wilson, ed., Confocal microscopy (Academic, London,
1990).

[23] C.I.R. Sheppard and A. Choudhury, Opt. Acta24 (1977) 1051.

[24] M. Abramowitz and LA. Stegun, eds., Handbook of
mathematical functions { Dover, New York, 1970).



