Focal switch: a new effect
In low-Fresnel-number systems

Manuel Martinez-Corral and Vicent Climent

It is shown for the first time we believe, that when a spherical wave illuminates a certain type of
diffracting screen, in addition to the expected focal-shift effect, depending on the value of the Fresnel
number of the focusing system, a focal switch effect can appear, i.e., an increase in the height of the

lateral lobe of the axial-intensity distribution over that of the central lobe.

America

It is well known that when a monochromatic converg-
ing spherical wave is diffracted by a circular aper-
ture the point of maximum intensity in the diffracted
field is not at the geometric focus but displaced
toward the aperture, resulting in the so-called focal-
shift effect.'-3 More recently, it has been recognized
that the focal-shift effect is also present in obscured
systems,*? in focused Gaussian beams,%8 or in gen-
eral in any type of diffracting screen.® Moreover
this effect has been shown to appear not only on the
optical axis but on any line directed toward the
geometric focus of the spherical wave front.10

The goal of this research is to recognize the
existence of a certain kind of diffracting screen
where the expected focal-shift effect can be accompa-
nied by another interesting effect: an increase in
the height of a secondary lobe of the axial-intensity
distribution over the height of the central lobe,
resulting in an effective permutation of the focal
point.

We start by considering a rotationally symmetric
diffracting screen whose amplitude transmittance is
t(r) and that is illuminated by a monochromatic
converging spherical wave. Then the amplitude
distribution along the optical axis in the vicinity of
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the focal point, within the paraxial approximation,
is?
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where r, is the external radius of the screen, z is the
axial coordinate as measured from the paraxial focal
point, and f is the focal length of the system, as
shown in Fig. 1.

Next it is convenient to employ the next geometric
mapping:
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which converts the integral of Eq. (1) into a one-
dimensional (1-D) Fourier transform. Then Eq. (1)
can be rewritten, apart from an irrelevant phase
factor, as
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where N = rOZ/ N\ represents the Fresnel number of
the aperture, i.e., the number of Fresnel zones that
are covered by the aperture as viewed from the
geometric focus, z = 0. Function u'(z) is the axial-
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Fig.1. Geometry of the diffraction problem.

amplitude distribution when the factors external to
the integral are not taken into account.

Finally, the intensity distribution along the optical
axis is given by the squared modulus of Eq. (3), that
is,
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From Eq. (4) it follows that the axial-intensity
distribution is governed by the product of two terms
that can be interpreted from the point of view of the
Huygens—Fresnel principle in the following way.
The first term, I'(z), involves the squared modulus of
the 1-D Fourier transform, with a scale factor
Nz/2(f + z), of the mapped version of the amplitude
transmittance of the diffracting screen, q({). This
term describes at any axial point the effect on
intensity from interference by the Huygens spherical
wavelets proceeding from all points of the diffracting
screen and whose amplitude depends on the transmit-
tance of the screen. In particular, in the case of a
purely absorbing screen the Huygens wavelets ar-
rive in phase at the geometric focus and maximum
intensity is achieved. However, as the secondary
wavelets propagate, their amplitude suffers an at-
tenuation that is proportional to the inverse covered
distance. This attenuation is described in Eq. (4) by
the term 1/(f+ z)2. This term, whose value in-
creases with negative values of z, is responsible, in
the case of Fresnel numbers with low values, for the
displacement toward the screen of the maximum of
the axial-intensity distribution, as we discuss below.

Because the scale factor of the 1-D Fourier trans-
formation is proportional to the Fresnel number of
the screen, for high values of N the function I'(z) is so
sharp about the geometric focus, z = 0, that its value
is negligible unless z is small enough that it can be
ignored when it appears in 1/(f + z2. In this case
the axial-intensity distribution is governed only by
the interference term, I'(z). However, when the
Fresnel number is small, the Fourier transformation
provides a function that smoothly decreases in the
vicinity of the focus. Now z cannot be ignored, and
then the term 1/(f + 2)? shifts the intensity peak to
negative values of z, resulting in the focal-shift

effect. Then it is clear that for a given diffracting
screen the lower the Fresnel number is, the greater
the amount of focal shift.

Now we address the following question: For a
fixed value of geometric parameters, ry and f, of the
optical setup, i.e., for a given value of the Fresnel
number, is it possible to predict when a diffracting
screen is more inclined to suffer a focal shift than
other screens are? To answer this question, we use
the reasoning described above in which it is stated
that the smoother the slope of function I'(z) in the
neighborhood of the paraxial focal point, the greater
the influence of factor 1/(f + 2)2 in the axial-intensity
distribution, and then the greater the amount of the
focal shift. Therefore it follows that a diffracting
screen that produces axial superresolution, i.e., an
axial-intensity distribution in which the central lobe
becomes narrower compared with that of the circular
aperture, is less sensitive to the focal-shift effect
than a diffracting screen that produces axial apodiza-
tion. In other words, the greater the capacity of a
screen for producing axial apodization, the greater
its sensitivity to the focal shift.

To illustrate this reasoning, in Fig. 2 we have
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Fig. 2. For the N = 10 case (a) the normalized version of the
function I'(z) = |u'(z)|2 corresponding to the diffracting screens

with transmittance g({) = 4¢2 (solid curve) and q({) = 1 — 4(2
(dashed curve), and to the corresponding circular aperture (dashed
curve); (b) normalized axial-intensity distribution for the same

screens as in (a).
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depicted for a relatively low value of the Fresnel
number, N = 10, the normalized axial-intensity
distribution, I(z) = |ulz)|2, compared with the normal-
ized version of the function I'(z) = |u'(2)|?, for the case
of two well-known diffracting profiles: q({) = 42,
which produces axial superresolution, and ¢({) = 1 —
42, which produces axial apodization. The normal-
ization is such that Iz =0) = I'lz=0) = 1. It is
apparent from this figure that, as we predicted, the
amount of focal shift is clearly greater in the case of
the axially apodizing profile.

The analysis of the curve corresponding to the
axially superresolving profile in Fig. 2(b) reveals
that, simultaneously with the effect of displacement
of the maximum of the central lobe toward the
aperture, another quite interesting effect appears.
This additional effect is due to the existence of a
lateral maximum that is closer to the aperture with a
relatively high value of irradiance and relatively far
from the geometric focus [see Fig. 2(a)l. This fact
permits the term 1/(f + zJ? to have a great increase
in value in the axis zone where this lateral maximum
islocated. Then, when the product of the two terms
of Eq. (4) is done to give the axial-intensity distribu-
tion, it results that the height of the lateral lobe is
approximately the same as that of the central lobe.
This fact implies that in practice it is rather difficult
to distinguish between these two maxima.

It is clear that this effect becomes more significant
as the value of the Fresnel number decreases.
Therefore it follows that for Fresnel-number values
lower than N = 10, the height of the lateral lobe is
greater than that of the central lobe. The result is
an effective permutation of the focal point. We refer
to this as the focal-switch effect, which to the best of
our knowledge has never been reported on.

To illustrate this result we represent in Fig. 3 the
normalized version of function Iz) for screen q({) =
422 and for N = 5. Note from this figure that now
the maximum of the lateral lobe is ~25% higher than
that of the central lobe.

To determine the range of Fresnel numbers for
which the focal-switch effect takes place, in Fig. 4
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Fig. 3. Normalized intensity distribution corresponding to the
axially superresolving screen, g({) = 4{%, and N = 5.
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Fig. 4. Relative excess, AI = (I — I¢)/I(0), of the maximum
intensity I;, of the lateral lobe over the maximum intensity /¢ of
the central lobe for systems with different Fresnel numbers.

we have represented the relative excess, Al =
(I, — I )/1(0), of the maximum intensity, I, of the
lateral lobe over the maximum intensity, I, of the
central lobe. We see that at N < 7.1 the focal-switch
effect takes place, whereas at N < 2.5, Al increases
dramatically as IV decreases.

Finally it is important to point out that, if we
define the focal-shift effect strictly as a variation
suffered by the position of the maximum of the axial
intensity when the Fresnel number is low, we find
that for a certain kind of screen, which in principle
has low sensitivity to the focal shift, in practice,
because of the focal-switch effect, a very great dis-
placement of the position of the maximum and then a
very great focal shift results.

Summarizing, we have stated that for a fixed
value of the Fresnel number, the sensitivity of a
diffracting screen to the focal-shift effect is closely
connected with its capacity to produce axial apodiza-
tion. In this context we found, for sufficiently low
values of the Fresnel number, that for certain axially
superresolving screens, simultaneously with the pre-
dicted focal-shift effect, an increase in the irradiance
of the lateral lobe over the irradiance in the central
maximum takes place, resulting in an effective per-
mutation of the focal point. To illustrate our result,
we have shown a numerically evaluated example.
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