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We propose a new method for the computation of the tristimuli values that correspond to the impulse
response along the optical axis provided by an imaging optical system working under polychromatic
illumination. We show that all the monochromatic irradiance distributions needed for this calculation
can be obtained from the Wigner distribution function associated with a certain version of the pupil
function of the system. The use of this single phase-space representation allows us to obtain the above
merit function for aberrated systems with longitudinal chromatic aberration and primary spherical
aberration. Some numerical examples are given to verify the accuracy of our proposal. © 1997 Optical
Society of America
1. Introduction

For assessing the performance of an optical imaging
system working under broadband illumination, the
classical monochromatic merit functions, such as the
point-spread function ~PSF! and the optical transfer
function, should be extended to the polychromatic
domain. This extension is usually carried out by the
addition of a suitable number of monochromatic com-
ponents weighted by the spectral distribution of the
source and the color sensitivity of the receiver.

Often, the polychromatic axial response of the opti-
cal system is of major interest as a measure of the
tolerance to aberrations. In particular, for visual op-
tical systems—i.e., those in which the human eye is the
final detector—the tristimuli values along the optical
axis are used as a figure of merit.1,2 These functions
are derived from the axial values of the different mono-
chromatic irradiance PSF’s. Since analytical expres-
sions for these PSF’s are achievable for only a few
simple pupil functions, several numerical methods to
evaluate them have been developed.3–5 However, the
sequential calculation of the axial PSF’s for every
wavelength in the polychromatic case leads to a time-
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consuming procedure. On the other hand, some
monochromatic merit functions have been expressed
successfully in terms of different phase-space repre-
sentations, such as the Wigner distribution function
~WDF! or the ambiguity function.6–9

It is important to recognize that these approaches
are especially useful when two circumstances take
place together: First, a high number of monochro-
matic merit functions must be calculated for the same
pupil function with different amounts of aberration,
and second, all the above merit functions can be ob-
tained from a single phase-space representation. In
this way a technique for the calculation of the poly-
chromatic optical transfer function of systems suffer-
ing from longitudinal chromatic aberration ~LCA!
has been proposed recently.10

Bearing in mind the above statements, in this
study we propose a new method for the computation
of the polychromatic axial response provided by an
optical system with an arbitrary exit-pupil transmit-
tance suffering from LCA and primary spherical ab-
erration ~SA!. This approach needs only the WDF of
the azimuthally averaged pupil function of the sys-
tem to obtain all the values of the monochromatic
axial irradiance PSF’s we require to construct the
polychromatic response along the optical axis. In
Section 2 we give the theoretical basis of the method,
and in Section 3 we present some numerical exam-
ples to illustrate its performance.

2. Basic Theory

The behavior of an optical imaging system under
broadband illumination can be evaluated from the



polychromatic axial PSF, given the isoplanatism of
the system. In particular, for visual systems the
axial response can be assessed from the tristimuli
values along the optical axis. These values are de-
fined as a function of the defocus coefficient dv20 by
the weighted superpositions

X~dv20! 5 *
l

I~dv20; l!x#lS~l!dl, (1a)

Y~dv20! 5 *
l

I~dv20; l!y#lS~l!dl, (1b)

Z~dv20! 5 *
l

I~dv20; l!z#lS~l!dl, (1c)

where I~dv20; l! is the axial monochromatic irradi-
ance PSF, S~l! stands for the spectral distribution of
the source, and x#l, y#l, and z#l denote the spectral
tristimuli values. These latter parameters can be
considered as the chromatic-sensitivity functions of
the human eye taken as a receiver for a given selec-
tion of the primary colors.

In general, we are involved in a two-step procedure
for calculating numerically the polychromatic merit
functions in Eqs. ~1!. The first step is to obtain, at
discrete points along the axial interval of interest, the
different monochromatic irradiance PSF’s provided
by the system for a suitably large number of wave-
lengths. The second step is the computation of the
axial tristimuli values by means of the weighted su-
perposition, evaluated in a discrete way, given by
Eqs. ~1!. Usually, the first step is a time-consuming
procedure, especially when a high accuracy is needed.
Therefore an approach for reducing the computation
time of the monochromatic irradiance PSF’s is wel-
comed.

The amplitude monochromatic PSF along the opti-
cal axis for an imaging system is given for large
Fresnel numbers by
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3 @v~r, f; l! 1 dv20r
2#Jrdrdf, (2)

where P~r, f; l! is the generalized pupil function of
the system, ~r, f! are the normalized polar coordi-
nates at the exit-pupil plane, t~r, f! 5 uP~r, f; l!u, and
v~r, f; l! is the wave-aberration function. We as-
sume that the chromatic variations of the modulus of
the generalized pupil function are negligible, i.e., the
function t~r, f! has no dependence on l. If the sys-
tem suffers from only SA and LCA, the aberration
function is reduced to

v~r, f; l! 5 v20~l!r2 1 v40~l!r4, (3)

where v20~l! and v40~l! are the LCA and SA coeffi-
cients, respectively. In this case, the axial mono-
chromatic irradiance PSF can be expressed as a
function of a single radial integral, as follows:

I~dv20; l! 5 up~dv20; l!u2

5
1
l2U *
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, (4)

where t0~r! is the azimuthal average of t~r, f!.11 By
performing the change of variable m 5 r2, we obtain
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where q0~m! 5 t0~r!. Using the transformation x 5
~m 1 m9!y2 and x9 5 m 2 m9 causes Eq. ~5! to result,
except for an irrelevant constant factor, in
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where the integration limits have been extended to
infinity, given the finite extension of the function
q0~x!. The inner integral in Eq. ~6! can be recog-
nized as the WDF of the one-dimensional function
q0,12 namely

Wq0
~x, n! 5 *

2`

1`

q0Sx 1
x9

2Dq0*Sx 2
x9

2D
3 exp~2i2pnx9!dx9. (7)

Thus the axial monochromatic irradiance PSF can be
written as a line integral of the above WDF, where
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the spatial-frequency variable n is related by a linear
transformation with the spatial variable x. Mathe-
matically,

I~dv20; l! 5
1
l2 *

2`

1`

Wq0
@x, m~l!x 1 n~l!#dx, (8)

where

m~l! 5 2
2v40~l!

l
, (9a)

n~l! 5 2
dv20 1 v20~l!

l
. (9b)

From Eqs. ~8! and ~9! we infer that all the values of
the axial irradiance PSF for every wavelength and for
any value of LCA and SA can be obtained from a
single two-dimensional representation, namely the
WDF of the mapped pupil q0~x!. This result can be
achieved by integration of the values of Wq0

along
straight lines in the phase-space domain. The slope
and the y intersect of these lines are fixed by the
value of the aberration coefficients and by the wave-
length of the light @see Eqs. ~9!#. Moreover, the same
WDF provides all the information needed to assess
the axial behavior of the system for any scaled ver-
sion of the pupil function, since they all lead to the
same q0~x!. If the pupil of the system presents no
amplitude variations, the study of the system for dif-
ferent values of its numerical aperture can be carried
out with the same phase-space function.

The present study can be extended in a straighfor-
ward manner to cases in which other aberrations—
apart from the LCA and SA—with negligible
wavelength dependence are present in the wave-
aberration function. In this situation the additional
phase variations of the generalized pupil P~r, f; l!
should be joined with the function t~r, f! to obtain the
function q0~x!.

Note that, because of the change of variable m 5 r2,
the axial values of the polychromatic irradiance PSF
are determined by the one-dimensional mapped func-
tion q0. Hence a two-dimensional phase-space rep-
resentation contains the whole of the information to
solve our problem, despite the fact that our starting
function is a two-dimensional pupil. This is a sin-
gular result since the WDF doubles the number of
variables of the original function as any other phase-
space representation. Several relevant properties of
the WDF are presented in Refs. 12–14 and the refer-
ences cited therein.

3. Numerical Examples

For testing the method and its performance we eval-
uate the polychromatic axial response produced by an
optical system with a clear circular pupil that suffers
from two different aberration functions. In the first
case we consider that the system is affected by only
LCA, whose v20~l! coefficient is shown in Fig. 1 ~case
1!. In the second situation, in addition to the previ-
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ous LCA the system also suffers from SA with a con-
stant coefficient of v40~l! 5 360 nm ~case 2!.

As was pointed out in Section 2, we can discuss
both situations starting from the same WDF associ-
ated with the function q0~x! of the system, which, in
this case, is simply a rectangle function. The func-
tion Wq0

~x, n! is digitally obtained by a sequence of
fast Fourier transformations with a resolution of
4096 3 4096 points in the phase-space domain. A
gray-scale picture of the modulus of this bidimen-
sional function is shown in Fig. 2. From this result
the axial values of the monochromatic PSF’s are cal-

Fig. 1. Variation of the LCA coefficient that affects the system
under study with l.

Fig. 2. Modulus of the WDF of the mapped pupil q0 under con-
sideration. A schematic representation of the integration lines
cited in the main text is also shown, with m~l! and n~l! given by
Eqs. ~9!.



culated by numerical integration along the straight
lines fixed by the parameters given by Eqs. ~9!.

For the system at issue it is possible to obtain an
analytical expression for the axial monochromatic ir-
radiance PSF’s for both aberration functions. This
theoretical result is used to assess the accuracy of the
proposed technique for the calculation of the mono-
chromatic components. For case 1 @v40~l! 5 0#, the
theoretical result is

I~dv20; l! 5
1
l2 sinc2Fdv20 1 v20~l!

l G ,

where sinc~x! 5 sin~px!y~px!. To show the agree-
ment between the theoretical prediction and the data
obtained with the technique we propose, we selected
three different wavelengths within the visible spec-
trum. Both results are compared in Fig. 3 and show
perfect matching between them.

We also perform the calculation of axial monochro-
matic irradiance for case 2. Since the mapped pupil
function q0~x! remains unchanged, no further calcu-
lation of the WDF is needed. The result is obtained
by a simple change, according to Eqs. ~9!, of the
straight lines along which the WDF should be inte-
grated. Here, the monochromatic axial irradiance
PSF’s also have an analytical expression in terms of
the Fresnel integrals.3 The theoretical result pre-
dicts, for each wavelength, an intensity maximum
located at dv20 5 2@v20~l! 1 v40~l!#. Figure 4 shows
the perfect correspondence between the analytical re-
sult and the data obtained with our method.

Fig. 3. Normalized monochromatic axial irradiance for three
wavelengths of the optical system with a clear circular pupil and
LCA shown in Fig. 1. The curves and symbols correspond to the
theoretical and the computed results, respectively. The normal-
ization is such that the maximum value of the irradiance for l 5
550 nm is unity.
Finally, the polychromatic response of the system
is also computed for both cases 1 and 2. The
spectral-sensitivity functions used in the computa-
tion of the axial tristimuli values correspond to those
associated with the CIE 1931 standard observer, and
we identify the spectral distribution of the source
with the standard illuminant C. The integrals in
Eqs. ~1! are numerically evaluated with a sampling of
400 equally spaced wavelengths in the range 400
nm # l # 750 nm.

For comparison purposes we use the results pre-
sented in Ref. 15 for the same systems. In that re-
search the monochromatic irradiance PSF’s were
obtained by use of the classical method of Hopkins
and Yzuel,3 and Eqs. ~1! were evaluated by direct
numerical computation. For comparison with these
results, an alternative description of the polychro-
matic axial behavior is used. In fact, instead of the
tristimuli values we employ a conventional set of pa-
rameters derived from them, namely the normalized
axial illuminance YN and the axial chromaticity co-
ordinates x, y. These magnitudes are defined as a
function of the defocus coefficient by

YN~dv20! 5
Y~dv20!

*
l

~1yl2!y#lSldl

, (10)

x~dv20! 5
X~dv20!

X~dv20! 1 Y~dv20! 1 Z~dv20!
, (11)

y~dv20! 5
Y~dv20!

X~dv20! 1 Y~dv20! 1 Z~dv20!
. (12)

Fig. 4. Same as in Fig. 3, but here the system suffers from an
additional SA with a constant coefficient of v40~l! 5 360 nm.
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The results reported in Ref. 15 concerning the axial
illuminance YN for cases 1 and 2 are plotted together
with our numerical data in Fig. 5. A quantitative
comparison shows that the relative difference, on av-
erage, for the computed axial positions in the central
lobe is less than 2.5% for each curve. The axial chro-
maticity coordinates are shown graphically in a sim-
ilar way in Fig. 6. As one can see from Fig. 6, the
agreement between both results is again evident.

Fig. 5. Normalized axial illuminance as a function of dv20 for the
two systems under study. The solid and dotted curves represent
the results shown in Ref. 15 obtained by use of the Hopkins and
Yzuel method,3 whereas the symbols correspond to the values ob-
tained with the method we propose.

Fig. 6. Axial chromaticity diagram for the two systems under
study. The notation used is the same as that for Fig. 5.
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As was expected a considerable reduction in the
computation time of the tristimuli values is achieved
with the technique we propose. This is because all
the monochromatic components needed for the calcu-
lation of the above parameters for both aberration
types are obtained from a single representation of the
pupil, whereas in the classical methods the entire
calculation must be repeated for each axial position,
wavelength, and aberration function. Although the
calculation of Wq0

~x, n! must be taken into account in
the computation time, the ratio of this contribution to
the total time is less and less important when a high
number of axial positions, wavelengths, or both are
involved.

4. Conclusions

An efficient method for the computation of the axial
polychromatic impulse response provided by imaging
systems suffering from LCA and SA has been pro-
posed. The large amount of calculation time needed
with the classical methods is reduced substantially
by our approach because of the use of a single phase-
space representation for obtaining all the data for the
computation. This representation is the WDF of a
certain mapped version of the azimuthally averaged
pupil function of the system.

Numerical examples show that the accuracy of the
method is high when compared with both analytical
and numerical results obtained by other approaches.
A detailed comparative analysis between the present
method and others already reported requires the op-
timization of the corresponding algorithms, and
therefore additional research is being carried out to
quantify the savings in computation time yielded by
our proposed technique for the same degree of accu-
racy.

Another outstanding feature of our approach is
that two of the most common aberrations affecting
optical systems, the LCA and the SA, become param-
eters, and consequently our formulation can be ap-
plied successfully for designing optical systems with
low sensitivity to defocus, LCA, and SA.
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