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Abstract

The intensity distribution along different paths in the image space of an optical system is described in a two-dimensional
phase-space domain in terms of the Wigner distribution function. This approach is useful for an efficient analysis of the
performance of optical imaging systems suffering from spherical aberration. The good performance of the method is shown

in some numerical simulations.

1. Introduction

There are several criteria for analyzing the performance
of an optical imaging system when aberrations, focus
errors and /or apodizer masks are present [1-3]. In most of
these quality criteria, the on-axis image irradiance is the
relevant quantity. However, as Hopkins has shown [4,5],
some of these space approaches can be extended using the
optical transfer function to give a tolerance criterion based
on the spatial frequency behavior. More recently, several
papers were published in which image quality parameters,
like the Strehl ratio or the modulation transfer function, are
studied using phase-space representations, mainly the
Wigner distribution function (WDF) and the ambiguity
function [6—12].

In one of these papers [11], the on-axis image irradi-
ance is analyzed for varying focus errors and different
types of primary aberrations using a two-dimensional WDF
associated to a modified one-dimensional pupil function.
However, in spite of being an interesting theoretical result,
from a practical point of view the main shortcoming of this
method is its lack of versatility due to the fact that the
WDF must be recalculated for each different value of the
aberration coefficients. Therefore, this approach is re-
stricted only to the analysis of optical systems since in this

' Permanent address: Centro de Investigaciones Opticas (CIOp).
Casilla de Correo 124, (1900) La Plata, Argentina.

case all the parameters are fixed. On the contrary synthesis
involves a procedure in which at least one parameter of the
system can be varied in order to get the optimum result.

The aim of this work is to generalize the result of Ref.
[11]. This generalization is achieved mainly in two aspects.
First, the intensity distribution can now be calculated not
only on the optical axis but along arbitrary curves in the
image space. These paths can be selected to obtain any
desired partial feature of the whole tridimensional intensity
distribution. The intensity along the curves is achieved
from a single two-dimensional WDF display by adding the
values of this representation along certain phase-space
slices. The second aspect of the generalization points to the
use of the method in a more efficient analysis (and also in
the synthesis) of optical systems, since the spherical aber-
ration coefficient and the defocus coefficient are both
parameters that can be varied in order to achieve a particu-
lar irradiance distribution. In this case, a single WDF
display serves to obtain the irradiance for a variable spheri-
cal aberration coefficient and defocus.

2, Basic theory

Let us consider an optical imaging system characterized
by an arbitrary pupil mask p(£,n), as sketched in Fig. 1.
By using normalized polar coordinates

E=ar'cos®’, m=ar'sinf’, (1)
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Fig. 1. A schematic illustration of an imaging optical system. The
function p( €,m) is the pupil with maximum height a; (x;,y;) are
the coordinates at the image plane (z = 0); (x,y) are the coordi-
nates of a defocused plane. The line S represents a typical path in
the image space.

the monochromatic field amplitude distribution at an arbi-
trary point (x,y;z), in the image space, can be written as
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where A is the constant incident amplitude, and A is the
wavelength. P(r',0') and W(+',0") are the pupil function
and the aberration function, respectively, in polar coordi-
nates. The analysis of the irradiance in the image space is
performed along curves which can be expressed in para-
metric form as x(z) and y(z), like the one depicted in
Fig. 1. By employing polar coordinates

x(z)=ap(z)cosp(z), y(z)=ap(z)sing(z),
(3)

Eq. (2) can be rewritten as
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Now, we perform the following transformation of the pupil
function

2mi
P(r,0")exp e W(r.,0';z)
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i.e., we define a generalized pupil function Q(r’,8’) as the
product between the aperture transmittance P(r',6") and
the phase exponential that takes into account all the aberra-
tions except from the defocus effect (Wzor’z) and the
spherical aberration (W,,r'*) which are separately written
in Eq. (5). The defocus coefficient W, is given by

az
Wy = m . (6)
By considering Eq. (5), Eq. (4) takes the form
U(p(2).¢(2):2)
A i
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with
F(rp(2).0(2)) = [ Z”Q(r',e')exp[—ﬂp(z)
0 A(f+2)
Xcos(G’—qp(z,))]dG’. (8)

The change of variable

i

P=ptd, )

in Eq. (7) leads to the following result for the intensity
distribution
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where
_F(rp(2).0(2)), —3<p<g3,
£:(w) { 0, otherwise. an
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By using the Wigner distribution function, which is a dual

phase-space representation of a signal f(x), defined as
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Eq. (10) can be rewritten as
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Therefore, the procedure to derive Eq. (13) can be summa-
rized in the following steps. First, a generalized pupil
function Q(+',0’) (in polar coordinates) is obtained from
the amplitude transmittance P(r’,68’) and from the wave-
aberration function W(r',8'), as given in Eq. (5). Then, the
angular integration (Eq. (8)) and the change of variable
(Eq. (9)) are performed to achieve a one-dimensional
modified pupil function f.(u) (see Eq. (11)). Next, the
two-dimensional WDF of f.(u) is digitally obtained. It
should be noted that for different paths in the image space
(p(2),¢(2)), the function f.( ) changes accordingly with
Egs. (8)—(11). Finally, the irradiance along these paths can
be found from the space-coordinate projection of the WDF
associated with f.(u), along a straight line in the phase-
space (x,v) given by

pm 2y 0T (14)

The versatility of the computation method becomes evi-
dent when one realizes that from a single phase-space
distribution the values of the irradiance at a given point
can be obtained for variable spherical aberration and defo-
cus, since both are parameters in Eq. (13). Moreover, for
certain paths the function f.(u) does not depend on the
variable z and therefore, in these cases the values of the
irradiance at every point in a given curve can be obtained
from the same WDF. Furthermore, inspection of Egs. (13)
and (14) reveals that the wavelength is also a parameter.
This result can be used in the calculation of quality
parameters of systems working under polychromatic illu-
mination. For the analysis of such systems it is necessary
to compute the irradiance point by point for a large
number of wavelengths, thus this approach is very well
adapted to this situation. Next, we illustrate the perfor-
mance of the method with some particular cases.

3. Examples

In the following examples we focus our attention on
three particular paths in the image space which are de-
picted in Fig. 2, namely: optical axis, straight line passing
through the center of the exit pupil with an arbitrary angle
@ (line A), and a straight line parallel to the optical axis
(tine B). A common feature of the irradiance along these
lines is that in each case it can be obtained from a single
two-dimensional Wigner representation of the function
F(#';p(2),9(2)) as it is shown in the following.

3.1. Optical axis

In this case p(z) =0 for all values of z, and therefore

F(rp(2) =0i0) = [770(r )40’ = 2ri ().
(15)

with 7o(r") the angular average of the generalized pupil
function Q(r’,8’) at every value of #. This result agrees
with McCutchen’s theorem [13] which, in this case, states
that the irradiance axial behavior of the system only
depends on the above average.

3.2. Straight line parallel to the optical axis

A straight line parallel to the optical axis is defined by
p(2) = py. ¢(2) = B,, with ( p,,0,) being the normalized
coordinates of the point of intersection between the straight
line and the pupil plane. By considering f > z (short paths
around the focal plane), we found

F(riz)= fOzﬁQ(r',G')

2mwiar]
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Fig. 2. Side view of the system in Fig. 1. The straight lines (A)
and (B) and the optical axis z are the paths along which the
analysis of the irradiance is performed in the examples in Sections
3.1, 3.2, and 3.3.
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which is independent of z. In particular, if Q(r',0")=

O(r"), the result is separable in the form
2mwa’rp,

Af ) ’

where J, is the Bessel function of first kind and order

zero.

F(r')=Q(r')2ﬂ'J0( (17)

3.3. Straight line passing through the center of the exit
pupil

In this case p(z) =tan(a X f+ z)/a, ¢(2) = 6,, where
« is the angle between the straight line and the optical axis
(see Fig. 2). Thus, Eq. (8) results

F(r':z)= F(r’)=f02ﬂQ(r',0’)

2amiar’
Xexp| — tan{ a ) cos(6' — 6,)|d8’,
(18)
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Fig. 3. Values of the irradiance as a function of the defocus
coefficient defined by Eq. (6), obtained for a circular aperture
with Wy, = 0 along particular cases of the straight line (A) in Fig.
2: (a) optical axis, (b) a=0.012°, and (¢} a =0.024°. The
results are obtained with our proposal (continuous line) and with
the method in Ref. [14] (dotted line).
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Fig. 4. Same as in Fig. 3 with W, = A /2.

which is also independent of z. If Q(+',8’) = Q(r'), the
result can be expressed as the product of the generalized
pupil function and a zero order Bessel function; i.e.,

F(r) =Q(r')27rJ(,(2T7Tar’tana). (19)

4. Numerical simulations and discussion

In order to test the performance of our method, we
computed the irradiance at 256 points along the straight
lines defined in Section 3, for two different pupil functions
illuminated with monochromatic light of wavelength A =
632.8 nm. For the focal distance f= 15.8 m is assumed.
The results are compared with those obtained by the
method of Yzuel et al. [14] which is a classical numerical
method for the calculation of diffraction patterns.

In the first case, we considered a circular aperture of 10
mm radius. The results assuming no spherical aberration
and with W,; = A /2 are shown in Figs. 3 and 4, respec-
tively, for three axes passing through the center of the exit
pupil with different inclinations with respect to the optical
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Fig. 5. Values of the irradiance obtained for a circular aperture
along a straight line parallel to the optical axis at +0.33 mm from
the origin (line (B) in Fig. 2): (a) W,, = 0 and (b) W, = A /2. The
results are obtained with our proposal (continuous line) and with
the method in Ref. [14] (dotted line).

axis. For a line parallel to the optical axis at 0.33 mm the
results with and without spherical aberration are shown in
Figs. 5(a) and 5(b).

A more general kind of pupil was considered in the
next example. It consists of a circular aperture of 10 mm
radius with a decentered circular obscuration, the ratio of
the inner to outer radii being 1 /3. For the calculation we
assumed that the obscuration is tangent to the center of the
pupil and that it is displaced towards the upper side in the
vertical axis as sketched in Fig. 6.

The irradiance was calculated in the neighbourhood of

Fig. 6. Pupil function composed of a circular aperture with a
circular decentered obscuration.
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Fig. 7. Same as in Fig. 3 for the pupil function of Fig. 6.

the image plane along the same axes defined in the previ-
ous case. In all cases the inclination was taken in the same
direction of the displaced obscuration (see the angle « in
Fig. 2). Again we considered two cases W,,=0 and
W, = A/2. The corresponding results are plotted in Figs.
7 and 8, respectively. For this pupil function (with and
without spherical aberration) we also computed the irradi-
ance along a line parallel to the optical axis at +0.33 mm
on the { axis; see Figs. 9(a) and 9(b).

The inspection of Figs. 3 to 5 and 7 to 9 shows that the
results obtained with our method match very well with
those achieved with the method of Yzuel et al. In Figs. 3,
4, 7 and 8 the results corresponding to both numerical
methods are indistinguishable since their data points differ
by less than 0.03%. The main differences can be appreci-
ated in Figs. 5 and 9, from which can be inferred that the
assumption f>> z in Section 3.2 is very severe and there-
fore, the accuracy of the results obtained with this approxi-
mation are acceptable only for points that lie very close to
the image plane.

It should be noted that, in spite of that, in the preceding
examples the Fresnel number of the systems are about
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Fig. 9. Same as in Fig. 5, for the pupil function of Fig. 6.

N =10, the method imposes no-restriction on the Fresnel
number of the systems to be analyzed.

Summarizing, we have shown that the values of the
irradiance along different paths in the image space can be
obtained for variable spherical aberration and defocus from
the WDF of a one-dimensional modified pupil function.
We have discussed in detail certain interesting paths for
which a single two-dimensional WDF allows one to obtain
the whole set of irradiances. Furthermore, this method can
be applied to other trajectories for which the approxima-
tions made in Section 3.2 also hold. We want to point out
that the results obtained in the numerical simulations
showed that our method is very efficient, since it drasti-
cally reduces the computation time, compared with the
method in Ref. [14]. A more detailed comparative analysis
between the present method and others available in the
literature is the subject of future work.
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