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Abstrac t. T he assessment of optical focusing systems with obscured
rectangular pupil masks su� ering from spherical aberration is performed by
use of a novel technique for the computation of the irradiance distribution along
the optical axis. It is shown that all the values of this function for a variable
spherical aberration can be obtained from a single bidimensional phase-space
representation: a Wigner distribution function associated with the pupil
function of the system. Several numerical examples illustrating the behaviour
of such aberrated systems are presented and some interesting features of the
results are discussed.

1. In trod uc tion

The study of the properties of the axial component of the far- ® eld irradiance
distribution corresponding to a purely-absorbing pupil ® lter has deserved the
attention of many researchers over the past few years. This study contemplates
several interesting aspects like the focal-shift e� ect that is inherent to the low
Fresnel-number focusing systems [1± 3], the symmetries and periodicities of the
axial ® eld [4], and the e� ect of annular [5], apodizing [6], or super-resolving [7± 9]
pupil ® lters on the pro® le of the axial irradiance distribution. Moreover, the
on-axis image irradiance is an essential merit function from which several quality
criteria, such as the Strehl ratio versus defocus, can be obtained [10]. The e� ect of
the primary spherical aberration on the axial irradiance has been explored
theoretically and experimentally for both unobscured [11] and obscured [12]
rotationally symmetric systems.

On the other hand, the far- ® eld axial irradiance concentration is an important
parameter in the study of unstable laser resonators. These devices provide an
output beam that, in general, is uniform in amplitude and spherical in phase across
an annular, or obscured square aperture. The edges of the aperture have major
e� ects on the outgoing wave in producing strong di� raction e� ects that can only be
taken into account by performing a full di� raction study. In this sense, some
studies of the far- ® eld properties for various models of unstable resonators have
been reported for non-centrally obscured circular and square apertures [13± 16].
Nevertheless, little attention has been paid to the e� ect of the spherical aberration
in such systems. This is an unexpected fact since this aberration is inherent to
devices consisting of spherical mirrors.
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Our aim in this paper is to evaluate the in¯ uence of spherical aberration in the
focusing properties of unstable optical resonators. In particular, we focus our
attention on the particular class of astigmatic rectangular unstable resonators
characterized by a square aperture obscured by a rectangular non-centred mask.
These setups are interesting because of their high tolerance to misalignments
[17].

For the above analysis, we propose a new method for the e� cient computation
of the axial irradiance in the image space provided by optical systems with any
rectangular pupil transmittance. It makes use of the Wigner distribution function
(WDF) of an azimuthally-averaged version of the pupil function of the system
from which all the values of the axial irradiance can be obtained for a variable
spherical aberration. A similar approach has been recently reported for the
computation of the Strehl ratio in the neighbourhood of the image plane that
contemplates the study of systems with radially symmetric apertures [18]. The
main drawback of this method is its lack of ¯ exibility, since a di� erent WDF is
required for the analysis of the same system with di� erent amounts of aberration.
This handicap is resolved by the technique proposed here.

In section 2, we give the theoretical basis of the method and, in section 3, we
analyse the in¯ uence of the spherical aberration on the axial irradiance distribution
for unstable resonators with di� erent geometries.

2. Axial irrad ianc e d istribu tion in th e foc al re gion

Let us consider the focusing geometry represented in ® gure 1. A square pupil
aperture with a rectangular non-centred obscuration is illuminated by a con-
verging spherically- aberrated wave of focal length f and wavelength ¸. This
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Figure 1. Schematic representation of the optical setup: (a) coordinate system, (b) relative
displacement ( h x, h y) of the rectangular dark mask.



situation corresponds either to the ® eld emerging from an astigmatic rectangular
unstable optical resonator focalized by a converging spherical lens, or to the case in
which the relative axial position of the mirrors in the unstable cavity provides an
emerging focusing beam. In order to evaluate the axial amplitude distribution in
the focal region, we particularize the Fresnel± Kirchho� di� raction equation for
the axial points, that is
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where, t(r, µ) is the amplitude transmittance of the pupil in polar coordinates, x 40

denotes the coe� cient for Seidel’ s spherical aberration, h = a /21 /2 stands for the
half-diagonal length of the square pupil, and z is the axial coordinate as measured
from the paraxial focal point of the illuminating wave.

For our purposes it is convenient to perform two mathematical manipulations
in this equation. First, the integration over µ leads to
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is a continuously-varying radially- symmetric function which, at every value of r,
stands for the azimuthal average of the pupil transmittance t(r, µ) [19]. The second
manipulation consists of the geometrical transformation
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r
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which maps the radial interval [0, h] into the one-dimensional (1D) interval
[- 1.5, 0.5], converting the integral in equation (2) into a 1D Fourier transforma-
tion of the product
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where
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¸f , (7)

denotes the Fresnel number of the square aperture, which accounts for the number
of Fresnel zones that are covered by the aperture as viewed from the geometrical
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focus (z = 0). In equation (6), the integration limits have been extended to in® nity,
provided the ® nite extension of the function qo( z ) and an irrelevant phase factor
has been omitted. The frequency variable in the above Fourier transformation can
be expressed, as is usual in the image formation theory, in terms of the defocus
coe� cient. This parameter is de® ned as

d x 20 = - ¸Nz
2( f + z)

. (8)

Thus, the axial amplitude distribution provided by the focusing geometry at issue
can be expressed as

U(z) = Q( d x 20 ; x 40 )
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and the axial irradiance distribution corresponding to a focusing geometry in the
presence of spherical aberration is given by
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At this point we want to remark that the axial behaviour of the focusing setup is
governed by the product of two functions. The ® rst one is a factor that explicitly
depends on the value of the Fresnel number N, namely

N +
2
¸

d x 20( )
2

. (11)

This factor is responsible for the focal-shif t e� ect in the low Fresnel-number
geometries [2]. The second one corresponds to the square modulus of the 1D
Fourier transformation of the function in expression (5), but centred at

d x 20 = - x 40 . (12)

The expansion of the square modulus in equation (10) leads to
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Using the transformation x = ( z + z Â ) /2 and xÂ = z - z Â , equation (13) results,
except for an irrelevant constant factor, in
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where the inner integral in equation (14) can be recognized as the WDF of the 1D
function qo, de® ned as
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Consequently, the axial irradiance distribution can be written as a line integral of
this WDF where the spatial frequency variable t is given by a linear function of the
spatial variable x as follows
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Therefore, the axial behaviour of the irradiance distribution provided by the
system for any value of spherical aberration can be obtained from a single WDF of
the mapped pupil qo( z ) , by integrating the values of this function along straight
lines in the phase-space domain. The slope and the y-intersect of these lines are
given by the spherical aberration coe� cient and by the wavelength through
equations (17). Moreover, the same WDF provides all the information required
to assess the axial behaviour of the system for any scaled version of the pupil
function, since all of them lead to the same qo( z ) . If the pupil of the system
presents no amplitude variations, the study of the system for di� erent values of its
numerical aperture can be carried out with the same phase-space function.

3. Nu m e ric al e xam ple s

We have evaluated the axial response provided by three di� erent optical
systems with Fresnel number N = 100. The ® rst one corresponds to a square
clear pupil of side a. The other two systems are characterized by the same
square aperture but with square obscurations located at ( h x = 0, h y = 0) and
( h x = 0, h y = 2 /3) , respectively (see ® gure 1 (b)). Both obscurations have sides of
a /3 length.

The azimuthally-averaged pupil functions qo( z ) for the three systems at issue
are shown in ® gure 2. From these functions, the three WDFs, W qo(x, t ) , have been
digitally obtained, by a sequence of fast Fourier transformations, for 4096 ´ 4096
points in the phase-space domain. In each case, the axial values of the irradiance
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have been achieved for di� erent amounts of spherical aberration by numerical
integration along the straight lines de® ned by the parameters d x 20 (axial location)
and x 40 (amount of spherical aberration) by use of equations (17).

The obtained results are represented in ® gure 3 for ® ve particular values of the
spherical aberration coe� cient, ranging from x 40 = - 2¸ to x 40 = 2¸. Regardless of
their resemblance, some important features can be inferred from these representa-
tions. First, the axial irradiance distribution becomes more and more non-
symmetrical with respect to its maximum value as the amount of spherical
aberration increases. This fact can be explained from the characteristics of the
product in expression (5), which is Fourier transformed in equation (10). For the
case x 40 = 0, the above product is a positive real function for all three cases under
study, and therefore the square modulus of its Fourier transformation is an even
function with maximum value at the origin (solid line in ® gure 3). For x 40 /= 0,
expression (5) becomes a complex function. As the spherical aberration coe� cient
increases in modulus, the loss of the symmetry of its Fourier transformation
becomes more noticeable.

Second, the axial maxima are shifted from the paraxial focus for values of
x 40 /= 0. This shift is shown, as a function of x 40 , in ® gure 4 for the three systems at
issue. Two di� erent regions can be observed in these representations. In the
neighbourhood of the value x 40 = 0 these functions present a linear behaviour,
whereas for a higher amount of spherical aberration they show an evident non-
linear dependence. The pro® le of expression (5) can be used again to account for
this behaviour. If the maximum value of the square modulus of its Fourier
transformation remains located at the origin for x 40 /= 0, the axial irradiance
peak will be located at positions that follow the linear distribution indicated in
equation (12). For symmetrical qo( z ) functions, this situation occurs for small
values of |x 40|. If qo( z ) is a shifted version of a symmetrical function, an additional
linear shift is present, as has been already reported in [10]. The behaviour of the
three considered mapped pupils is quite similar to this class of functions for low
spherical aberration, especially for the case of the centrally obscured pupil which is
a nearly-symmetrical shifted function (see ® gure 2). For higher values of x 40 , the
nonlinearity of the above axial shift is caused by the displacement of the maximum
value of the square modulus of the Fourier transformation in equation (10).
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Figure 2. Mapped pupil functions for the three systems at issue.



The third feature that can be extracted from ® gure 3 is that the irradiance
maxima obtained for negative values of x 40 are higher than those corresponding to
the same amount of positive spherical aberration. This behaviour is caused by the
external parabolic factor in equation (13). This would be a surprising fact because,
as we are dealing with focusing systems having high Fresnel-number, it was
expected that the e� ect of this factor would not be noticeable [1]. However, when
we deal with axial irradiance patterns that are not centred at the geometrical focus,
the in¯ uence of the external parabolic factor is, even for high values of N, rather
di� erent for di� erent axial positions of the irradiance peaks, as was pointed out in
[3], this being higher for the positive values of d x 20 than for the negative ones.
Since this e� ect becomes more signi® cant for lower values of the Fresnel number
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Figure 3. Normalized axial irradiance obtained from the WDF of the functions shown in
® gure 2, for di� erent amounts of spherical aberration (at right). The normalization is
such that the maximum value of the irradiance for the clear aperture is unity.



of this setup, it follows that it is possible to design optical systems in which the
combination of a given amount of spherical aberration with a proper Fresnel
number provides an overall irradiance peak higher than the one obtained with the
aberration-free situation. This is an interesting e� ect that, to our knowledge, has
not been reported before in the literature.

Finally, it is noticeable that, except from the obvious decrease in the maximum
irradiance values, both the shape (® gure 3) and the maxima location (® gure 4) of
the axial irradiance distribution provided by the systems with clear and decentred
pupils are quite similar, while the case with central obscuration departs from this
common behaviour. This e� ect can be explained by the inspection of ® gure 2 if
one realizes that in the ® rst two cases both mapped functions qo( z ) Ð and, there-
fore, their WDF representationsÐ are much more similar to each other than to the
third one.

4. Conc lu sion s

The in¯ uence of the spherical aberration on the axial irradiance produced by
focusing optical systems with obscured square apertures has been investigated.
The analysis of the irradiance along the optical axis has been performed with an
original method that uses the WDF of a 1D function, which is directly derived
from the pupil function of the system. This method is especially adapted to the
study presented here, because all the axial irradiance values can be obtained from
the same phase-space function for a variable spherical aberration, provided that the
coe� cient corresponding to this aberration is a parameter in our approach.

From the above analysis several interesting features have been extracted. First,
the pro® le of the irradiance distribution along the optical axis is non-symmetrical
around its maximum value for spherically aberrated systems. Second, the overall
axial maxima are shifted from the paraxial focal point in an almost linear fashion.
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Figure 4. Axial location of the irradiance maxima as a function of the primary spherical
aberration coe� cient that a� ects the systems under study.



Third, the magnitude of these maxima depends not only on the modulus of x 40 but
also on its sign. All these features have been interpreted in terms of the
characteristics of the above-mentioned 1D function associated with the pupil of
the system.

Finally it is worth mentioning that the method used in this work is not
restricted to the application presented here. Since the wavelength is also a
parameter in the computation of the axial irradiance distribution, it can be
successfully applied to the computation of quality parameters for optical systems
working under polychromatic illumination. A similar approach has already been
used in computing polychromatic merit functions [20].
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