
Ann u lar bin ary ® lte rs for c on trolling th e axial beh av iou r of
optic al syste m s

TOMASZ CICHOCKI, MANUEL MARTIÂ NEZ-CORRAL
Departmento de Optica, Universidad de Valencia, 46100 Burjassot,
Spain

MAREK KOWALCZYK
Institute of Geophysics, Warsaw University, Pasteura 7,
02-093 Warsaw, Poland

and PEDRO ANDREÂ S
Departamento de Optica, Universidad de Valencia, 46100 Burjassot,
Spain

( Received 5 December 1996; revision received 6 June 1997 )

Abstrac t. The one-dimensional (1D) version of the iterative Fourier trans-
form algorithm (IFTA) and a modi® ed error di� usion algorithm are proposed
for binarizing rotationally symmetric pupil ® lters designed to shape the axial
impulse response of optical system. The resulting binary masks consist of a set
of transparent and opaque annular zones of equal area or equal width. A
numerical experiment in which we examine the performance of the binarization
methods is carried out. In this experiment the resemblance between the axial
di� ractive behaviour of the binary version of an axially superresolving pupil
® lter, and that of the original continuous-tone ® lter is evaluated. It is shown
that the performance of the binary mask obtained with 1D IFTA is much better
than that of the annular binary ® lters obtained by other digital half-toning
techniques which preserve the rotational symmetry of binarized pupils.

1. In trod uc tion

In many optical devices, for example in confocal scanning microscopes, the
axial amplitude distribution in the image of a point source, that is the axial
amplitude impulse response (AAIR) of the optical system, is a matter of interest.
Therefore several e� orts have been addressed to control this characteristic. As the
axial response of a pupil ® lter is determined by its radially averaged transmittance,
certain radially symmetric pupil ® lters have been proposed to shape this response
on purpose. As some examples we can mention pupils which yield high focal depth
[1, 2], reduction of the in¯ uence of spherical aberration [3], axial superresolution
[4, 5] and improvement in the optical sectioning capacity in confocal scanning
microscopy [6, 7]. On the other hand, the manufacture of pupil ® lters in which the
amplitude transmittance is a continuous function of the radial coordinate is a
di� cult task. In the case of real non-negative pupil functions (purely absorbing
® lters) a possible method to overcome this di� culty is to replace them by binary
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functions obtained by means of digital half-toning. Filters whose transmittance is
complex have to be coded as holograms, for example binary Gabor holograms [8].
Both classes of binary elements can be easily produced by light plotters or laser
printers.

A variety of half-toning algorithms designed for binarization of continuous-
tone pictures or for computer generation of binary di� ractive optical elements have
been already reported [9]. When these methods are used, the spatial frequency
spectrum of a binary object becomes a sum of a binarization-noise spectrum and
the spectrum of the original continuous-tone object. Recently some half-toning
techniques for binarizing grey-tone pupil ® lters with the aim of obtaining a high
resemblance between the transverse intensity impulse response (TIIR) of the
binary mask and that of the original pupil ® lter have been proposed [10, 11]. As
digital half-toning techniques are usually based on two-dimensional (2D) regular
grids (rectangular or hexagonal), this leads in the case of binarized rotationally
symmetric pupil ® lters to an additional deformation of TIIR: the rotational
symmetry of the original TIIR is broken.

A solution to this problem can be found by means of one-dimensional (1D)
binarization methods processed along the radius of the pupil. There are methods
which yield rotationally symmetrical binary ® lters reported in the literature.
Hegedus [12] proposed three methods for such ® lters. They are based on pupil
subdivision into annuli of equal width, into annuli of equal area or into annular
zones with adapted width. These methods require, in principle, arbitrary high
resolution of the printing device, as the transmitting part of each annulus has to
transmit the same amount of energy as the corresponding zone in the continuous
® lter. Thus such ® lters are hardly printable by the devices which o� er not very
high resolution.

Recently Kowalczyk et al [13] proposed two methods based on the adapted
error di� usion (ED) technique. The resulting binary ® lters, depending on the
method, consist of sets of transparent and opaque annular zones of equal width or
equal area. The number of the zones depends only on the resolution of the printing
device and the size of the pupil and is set before the binarization process. In spite
of the fact that these methods were designed for Fourier plane response, they can
also be used for shaping the axial response.

For implementation of rotationally symmetric binary mask that shapes the
AIIR, Rosen and Yariv [14] proposed the use of a direct binary search (DBS)
algorithm for coding a phase-only radially symmetric distribution in a binary
computer-generated hologram. This method has two drawbacks. On the one hand,
the use of a DBS algorithm starting from a random binary ® lter reaches a local
minimum of the reconstruction error very quickly. On the other hand, owing to
the holographic coding, the obtained axial intensity response is periodic (higher-
order foci), which is quite far from the aim of this work.

In this paper we propose the use of a 1D iterative Fourier transform algorithm
(IFT A) [15] and 1D modi® cations of ED. The use of the IFTA is justi® ed by the
fact that the AIIR of a rotationally symmetric ® lter can be easily evaluated by the
1D Fourier transform of the properly mapped transmittance pro® le of the ® lter
[16]. Similarly the ® lter pro® le needed for a certain axial impulse response can be
obtained by the inverse transform. Thus to binarize the amplitude transmittance of
the ® lter it seems that the 1D IFTA is an adequate tool. The use of this algorithm
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allows one to obtain the AII R of a binary ® lter virtually identical with the response
of a continuous ® lter within a speci® ed region.

As the ED technique has been up to now considered for focal plane applica-
tions, the axial properties of this algorithm have, in fact, already been determined.
This is because the equal-area-zone (EAZ) ED algorithm [13] is a version of a well
known 1D ED algorithm supporting an error- free region centred at the origin of
the spectral domain [17]. This means that these already-proposed methods can be
used for the task of binarizing axial apodizers.

In a numerical experiment the performance of a binary mask obtained by
means of IFTA is evaluated in terms of the signal-to-noise ratio (SNR) for the case
of an axially superresolving purely absorbing pupil ® lter. Then a similar evaluation
is performed for the ® lters generated with algorithms based on 1D ED. The axial
di� ractional behaviour of the IFTA ® lter is found to be much better than those
generated by other algorithms.

2. Axial am plitu de im pu lse re spon se of pupil ® lte rs

Let us start by considering the AAIR of an aberration-free imaging system that
is apodized by a radially symmetric pupil function p(r), that is [16]

u(z) = 2
r0

0
p(r) exp - i2p

zr2
0

2¸f ( f + z)
r
r0

2

r dr, (1)

where r0 represents the maximum radial extent of the pupil ® lter, z is the axial
coordinate measured from the image plane and f is the focal length of the system,
as depicted in ® gure 1.

It is apparent that the integral relation of equation (1) can be easily converted
into a 1D Fourier transformation. To this end we propose the following geo-
metrical mapping:

z =
r2

r2
0
- 0.5, q( z ) = p[r( z ) ]. (2)
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Figure 1. Schematic representation of the optical set-up under consideration.



Then, equation (1) can be rewritten, apart from irrelevant phase and constant
factors, as

u(z) =
0.5

- 0.5
q( z ) exp - i2 p

Nz
2( f + z)

z d z , (3)

where the parameter N = r2
0 /¸f represents the Fresnel number of the pupil, that is

the number of Fresnel zones that are covered by the pupil as viewed from the axial
point of the image plane, z = 0.

Equation (3) states that the AAIR of an optical system is governed by the 1D
Fourier transform of the mapped version of the amplitude transmittance q( z ) of
the pupil ® lter. The Fourier transform is calculated for an axial spatial frequency
Nz /2( f + z) which is nonlinear with respect to z and is equal to the well known
defocus coe� cient W 20

W 20 =
Nz

2( f + z)
. (4)

Now, by substituting equation (4) into equation (3) we obtain

u(z) = Q( W 20 ) =
0.5

- 0.5
q( z ) exp (- i2p W20 z ) d z . (5)

3. Bin ariz ation of th e fu n c tion q (³)
As established in section 2, the AAIR of a radially symmetric apodized imaging

systems is proportional to the 1D Fourier transform of the function q( z ) . It is then
apparent that, if we are interested in obtaining a binary mask which reproduces the
axial response of pupil ® lters designed to control the AIIR of an optical system, it
is precisely q( z ) the function which should be binarized. Furthermore, to reach this
aim an algorithm specially designed for obtaining strong resemblance between the
low-frequency spectra of the binary mask and its continuous- tone counterpart
should be used. Then, the 1D version of the IFT A and ED are the adequate
binarization techniques.

The IFT A originates from the phase retrieval problem [18]. Using this
algorithm, one searches iteratively for a pair of functions ful® lling simultaneously
a set of constraints in both Fourier and space domains. The original algorithm was
aimed at ® nding an object from modulus of its Fourier transform. In di� ractive
optics, IFTA allows one to obtain a binary mask whose Fourier transform is in
certain regions of the spatial frequency domain virtually identical with the Fourier
transform of a continuous- tone ® lter [15]. The ¯ ow chart of the IFTA is presented
in ® gure 2.

The operators used in the algorithm are de® ned as follows:

U (k) qj ( z ) =
0, |qj( z ) | < e(k) ,
1, |qj( z ) | > 1 - e(k) ,

|qj( z ) |, otherwise,
(6)

and

H
~
Qj ( W 20 ) =

b j|Q( W 20) | exp {i arg [ ~
Q j( W 20) ]}, W 20 Î S ,

Q j( W 20) , otherwise.
(7)
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The algorithm starts with sampling the mapped transmittance in M equidistant
points z i = (2i - M + 1) /2M, where i = 0, . . . , M - 1. Then, the discrete function
undergoes a nonlinear transform by operator U, which represents constraints in
the z domain. The modi® ed function ~q( z i) = Uq( z i) is Fourier transformed
(usually by a fast Fourier transform (FFT )) and the function

~
Q( W 20 ) is obtained.

Now, Fourier domain constraints H are imposed. After this modi® cation the
function is inversely transformed to the z domain and U is again applied on it.

The operator U is a tunable nonlinear function which allows one to avoid the
stagnation of the binarization process [15]. The parameter e(k) Î ]0, 0.5] is in-
creased after a speci® ed number of iterations. Finally U approaches the thresh-
olding operator. Thus ® nal loops of the iteration process are executed with the
hardclip (e(k) = 0.5) . The operator H represents constraints in the Fourier domain.
In the region S it substitutes the modulus of the spectrum of modi® ed function by
the modulus of the spectrum of original continuous-tone function. The propor-
tionality coe� cient b j , which minimizes the quadratic deviation of | ~

Q j| from |Q|
over the window S , is calculated in each iteration. When the procedure is
terminated, the inverse mapping of ~qj ( z i) into the r domain leads to the actual
® lter consisting of a set of M concentric annular zones of equal area. This
con® guration of the ® lter will be referred to as an EAZ ® lter.

An alternative method for attempting to binarize axial apodizers is to use the
1D version of the error di� usion algorithm [19]. Kowalczyk et al. [13] have already
proposed the use of such algorithm with the aim of obtaining binary masks that
reproduce the transverse behaviour of radially symmetric pupil ® lters. They
proposed two methods of pupil subdivision.

In the ® rst method the area of the pupil is divided into annular equal-width
zones (EWZs), which implies that one should apply the ED algorithm to the
function p(r) and not to q( z ) . Therefore the radius r0 should be divided into N
intervals of equal length. With this division each zone has a di� erent area. We take
this into account by proper weighting of the error to be di� used from one zone to
the next. The weighting factor w( i) must be equal to the ratio of the area D( i - 1)
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Figure 2. The ¯ ow chart of IFTA.



of the already-binarized zone to the area D( i) of the zone under binarization. With
the inner radius of the ith annular zone equal to ir0 /N, we have that

w( i) =
D( i - 1)

D( i)
=

2i - 1
2i + 1 , i = 0, . . . ,N - 1. (8)

A second fact to be considered is that the direction of the binarization process
clearly a� ects the quality of the resulting binary ® lter. If the procedure is executed
starting with i = 0, that is from the centre of the ® lter, the error obtained at the
last sample, which indeed has the largest area, remains uncorrected. In order
to minimize the uncorrected error the algorithm should be processed in the
opposite direction, that is starting from i = N - 1. In this case the di� usion
weight applied is

wÂ ( i) =
D( i + 1)

D( i)
=

1
w( i + 1)

. (9)

In the second method the area of the pupil is divided into concentric annular
zones of equal area, what implies that one should apply the ED algorithm to the
function q( z ) . This is because the annuli of equal area in the pupil correspond now
to the intervals of the equal length in the z domain. Consequently, the weighting
factor becomes constant and equal to unity.

4. Nu m e ric al e xpe rim en t

The viability of the methods proposed in Section 3 was established in a
numerical experiment. We considered a ® lter function p(r) = (2r2 - 1) 2,
r Î [0, 1] ( ® gure 3 (a), broken curve), which exhibits superresolving properties
along the optical axis [20]. After the mapping described in equation (2), p(r) takes
the form of parabolic function q( z ) = 4 z 2, z Î [- 0.5, 0.5] ( ® gure 3 (b), broken
curve). We aimed to get a binary ® lter supporting an AIIR virtually identical
with that of a continuous ® lter within the interval A which is centred about the
focal point and is bounded by the second-order minima of AIIR. We evaluated the
results of our simulation using the SNR de® ned as

SNR( M) =
A
|Q( W 20 ) |4 dW 20

A
[|Q( W 20 ) |2 - a ( M) |B( W20 ; M) |2]2 dW 20 ,

(10)
where the coe� cient

a ( M) =
A
|Q( W 20) |2|B( W 20 ; M) |2 dW 20

A
|B( W 20 ; M) |4 dW 20 (11)

maximizes the SNR, B( W20 ; M) being the AAIR of the resulting binary mask.
This SNR is a measure of the resemblance between corresponding AIIRs and, in
general, depends on the selected number M of binary zones [13].

The AIIRs of binary ® lters were calculated as the squared modulus of
coherently added Fourier transforms of all transparent binary cells, that is sincus
functions multiplied by corresponding phase factors. Thus the integrations of
equations (10) and (11) were performed on continuous functions.

Three following binarization algorithms were applied on p(r). First we binar-
ized it by the proposed 1D IFTA procedure. To this end the function q( z ) was
sampled in M = 20 equally spaced points z i . In order to obtain a su� ciently dense
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(a)

(b)

Figure 3. Binary version of axially superresolving pupil ® lter obtained by the 1D IFTA
method for M = 20: (a) representation in the r domain; (b) representation in z space.
The broken curves represent the amplitude transmitance of the continuous-tone ® lter.



sampling within the interval S , the function q( z i ) was surrounded by zeros and
formed the vector of 140 pixels. When the Fourier transform is calculated by
means of a FFT, this is the usual way used to control the density of sampling in the
spectral domain (for example [17]). The vector obtained in this way served as an
input for the IFTA algorithm. The parameter e(k) (equation (6)) was increased
from 0.05 to 0.5 by 0.05; therefore k = 1, 2, 3, . . . , 46. The free parameters in this
case were the number of iterations between the changes from e(k) to e(k+ 1) in the
nonlinear operator U, and the extension of the spectral region S in which we
exchange the spectra in the successive loops of the algorithm as, in principle, the
areas A and S need not coincide. We found that the reasonable number of
iterations after which e(k) should be increased equals three. A further increase in
the number of iterations did not in¯ uence the result and increased the computation
time only. During the experiment we also revealed that the size of spectral
exchange region S in¯ uences the SNR. This made us look for an optimal region
S in which the moduli of the corresponding spectra were replaced (equation (7)).
We found that S consisting of 40 central samples maximizes the SNR, that is we
found optimal S to be slightly wider than A.

The amplitude transmittance of the binary ® lter obtained by the iterative
technique is presented in ® gure 3. The solid lines in ® gures 3 (a) and (b) represent
the binary ® lter in the r and z domains respectively. The negative of the actual
® lter is presented in ® gure 4 (a). The SNR calculated for this ® lter is equal to
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(a) (b)

(c)

Figure 4. (a) The negative of the actual ® lter consisting of 20 EAZs obtaining by IFTA;
(b) the negative of the ED ® lter consisting of 18 EAZs; (c) the negative of the ED ® lter
consisting of 35 EWZs.



46 167. This high value is justi® ed as within the window A the distribution
a ( M) |B( W 20 , M) |2 coincides almost perfectly with |Q( W 20) |2 ( ® gure 5). The
parameter a ( M) (equation (11)) is equal to 0.70 for the binary ® lter. Its inverse,
a - 1 ( M) , can be considered a light e� ciency of the binary pupil ® lter related to the
light e� ciency of the underlying grey-tone ® lter. In our case the light e� ciency of
continuous ® lter is about 30%less than the light e� ciency of its binary counter-
part.

Then the binary ® lter obtained by the IFTA technique was compared with
binary ® lters obtained with the ED algorithm. Before presenting the results, two
important facts, which were pointed out in [13], have to be commented on. First,
the SNR is not a monotonic function of the number of EAZs or EWZs. There
exists some privileged numbers of zones for which SNR is considerably higher
than for a slightly smaller or a slightly larger number of zones. Therefore the
requirement of spatial resolution as high as possible does not always maximize the
SNR. This means that, if it is possible to print a ® lter consisting of M annular
EAZs, one has to evaluate also the performance of ® lters which are composed of
less than M zones to ® nd the best. The second problem deals with the comparison
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Figure 5. The AllRs of the binary IFTA ® lter ( Ð Ð Ð ) and original grey-tone ® lter
(- - - - - -). The SNR was calculated in the region between the two vertical broken
lines. The AII R of the binary ® lter was multiplied by a ( M) .



of EAZ and EWZ algorithms. If the printing device has the same resolution for
both kinds of annular ® lter and is able to produce an EWZ ® lter with N zones, it
will produce an EAZ ® lter consisting of M = N2 /(2N - 1) zones only. Thus the
performance of an EAZ ® lter consisting of 20 annuli should be compared with the
performance of an EWZ ® lter consisting of up to 40 zones.

The combined plot of these two cases is presented in ® gure 6. The ® lters
produced by the ED technique demonstrate the highest SNR for 18 EAZs and 35
EWZs. Their SNRs equal 1183 and 3575 respectively. The negatives of the EAZ
and EWZ ® lters are presented in ® gures 4 (b) and (c) respectively. Note that SNRs
obtained with both ED techniques are lower than the SNR of an IFTA ® lter by
one order of magnitude.

We have also calculated the intensity impulse response of the ® lters in the focal
plane for all of the three cases. Their SNRs were calculated according to equations
(10) and (11) after the necessary modi® cations. In this case the SNR obtained for
the IFT A ® lter was also higher than the SNRs of ED ® lters by one order of
magnitude.

5. Conc lu sion s

In this paper the 1D IFTA and modi® ed 1D ED algorithms are applied to
produce binary ® lters with the desired axial impulse response. The resulting
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Figure 6. The comparison of SNRs obtained with EAZ (+ ) and EWZ ( s ) ED ® lters;
( w ), SNR of the IFTA ® lter consisting of 20 EAZs.



binary ® lters take the form of concentric transparent and opaque zones of equal
area or equal width. Taking the axially superresolving ® lter as an example, we
showed that the performance of the binary mask obtained by the 1D IFTA exceeds
the performance of similar ® lters obtained with 1D ED algorithms if the resolution
of the printing device is taken into account. In our experiment we did not optimize
the IFT A for the number M of binary zones, the step of the parameter e(k) (i.e.
e( k+ 1) - e(k) ) or its initial value e( 1) . This suggests that further optimization is
possible.

The 1D IFTA technique also exhibits a high SNR as far as focal plane impulse
response is concerned. This allows us to believe that this algorithm could be a way
for producing binary ® lters with controlled 3D impulse response around the focal
point.
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