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Abstrac t. We report a quite simple analytical formula for the evaluation of
the focal shift in apodized systems, with or without rotational invariance.
Speci® cally it is shown that the magnitude of the focal shift is determined by
the product of the Fresnel number of the focusing geometry and the standard
deviation of a mapped version of the azimuthal average of the pupil transmit-
tance. To illustrate our approach, several examples are examined.

1. In trod uc tion

It is well known that, when a monochromatic uniform converging spherical
wave is di� racted by a circular aperture, the point of maximum irradiance in the
focal region is not at the geometrical focus but is displaced towards the aperture,
resulting in the so-called focal-shift e� ect [1± 3]. This e� ect has been found to
appear alsoinother geometries, for example inuniformly illuminatedsystems with
obscuredpupils [4, 5], in focused Gaussian beams [6, 7], or, ingeneral, inany type
of di� racting screen [8± 10].

Although in general it has been recognized that the magnitude of the focal shift
is closely related to the Fresnel number of the focusing geometry, only for the
particular case of the circular aperture under uniform[1]or Gaussian [7]spherical
illumination has an approximate analytical formula been reported for its evalua-
tion. In connection with this last focusing geometry it is of relevance that the
formula, whichwas reportedbyLi [11]and is based onthe focal-shift formulae for
the cases of the circular aperture and the non-truncated Gaussian beam, gives the
focal shift with quite good accuracy.

The aim of this paper is topresent an analytical formulation for the evaluation
of the focal shift for the general case of spherically illuminated, rotationally
asymmetric di� racting screens, that is, for di� racting screens whose amplitude±
transmittance function t(r,µ) does not exhibit, in general, rotational invariance.
The approach, which is basedonthe moment expansionof amappedversionof the
azimuthal average on the screen amplitude transmittance, permits us not only to
calculate in quite a simple way the focal shift but also to de® ne a new merit
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function for estimating the tendency of adi� racting screen tosu� er the focal-shift
e� ect.

In section 2 we formulate the basic theory for evaluating the axial-irradiance
distribution produced by an arbitrary, radially asymmetric di� racting screen, at
any Fresnel number. In section 3 we obtain an analytical formula that explicitly
depends on the product of the Fresnel number of the focusing geometry and the
standard deviation of the pupil, for evaluating in quite a simple way the relative
focal shift. Finally, in section 4 we illustrate our approach by calculating the focal
shift in some focusing geometries.

2. Basic th e ory

Let us start by considering a purely absorbing, rotationally asymmetric
di� racting screen, with amplitude transmittance t (r,µ) , which is illuminated by a
uniform monochromatic spherical wave of focal length f , as shown in ® gure 1.
Then, the amplitude distribution along the optical axis in the vicinity of the focal
point, within the paraxial approximation, is [9]

U (z) = exp (ikz)
i¸f ( f + z) ò

2p

0 ò
r0

0
t(r,µ) exp - i2p

z
2¸f ( f + z) r2( ) r dr dµ, (1)

where r0 is the maximum radial extent of the di� racting screen and z is the axial
coordinate as measured from the paraxial focal point F.

The integation of equation (1) over µ gives

U (z) = exp (ikz) 2p
i¸f ( f + z) ò

r0

0
t0(r) exp - i2p

z
2 f̧ ( f + z) r2( ) r dr, (2)

where
t0(r) = 1

2p ò
2p

0
t(r,µ) dµ, (3)

is aradially symmetric function that represents the azimuthal average of the screen
amplitude transmittance t (r,µ) for each value of r. From equation (2), one infers
that the axial behaviour of aradially asymmetric focusing set-up is governedby the
one-dimensional (1D) Fourier transform of a radially symmetric version of the
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Figure 1. Geometry of the focusing set-up.



amplitude transmittance of the di� racting screen. In order to make the Fourier-
mapping relation clear, it is convenient to employ the next geometrical mapping

x =
r
r0( )

2

- 0.5, q0( x ) = t0(r), (4)

which translates the radial interval [0,r0] into the 1D interval [- 0.5,0.5]. Now, by
substituting equation (4) into equation (2) we ® nd that, aside from an irrelevant
pre-multiplying phase factor, the axial amplitude distribution is

U (z) = Q (W20) =
p (N - 2W20)

f ò
0.5

- 0.5
q0( x ) exp (- i2p W20 x ) dx , (5)

where

N =
r2
0

¸f
(6)

represents the Fresnel number of the focusing set-up, that is, the number of
Fresnel zones that are covered by the di� racting screen as viewed from the
geometrical focus, whereas the axial coordinate is expressed in terms of

W20 =
Nz

2( f + z) , (7)

which is the well-known defocus coe� cient measured in units of wavelength.
As the aimof this workis the calculation of the position of the maximumof the

axial-irradiance distribution, next we express the axial behaviour of the focusing
set-up in terms of the normalized axial irradiance IN(W20) = I (W20) /I (0) , namely

IN(W20) = 1- 2
N

W20( )
2
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ï
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= 1- 2
N

W20( ) 2
IN(W20) . (8)

From this equation it follows that the axial-irradiance pattern is determined from
the product of two terms. The ® rst term IN(W20) involves the 1D Fourier
transform of the mapped transmittance q0( x ) of the screen. Since t (r,µ) and
consequently q0( x ) are real and positive functions, this term is symmetrical
about the geometrical focus, W20 = 0, where its maximum value is achieved.
The second term (1- 2W20 /N)2, which has W20 as the functional variable, is
responsible for the loss of symmetry in the axial-irradiance distribution and,
therefore, for the displacement of the irradiance maximum towards the screen
plane, as we discuss below.

From equation (8), it is clear that for a given pro® le of the di� racting screen,
that is, for a ® xed q0( x ) , the in¯ uence of the parabolic term (1- 2W20 /N)2 and,
therefore, the magnitude of the focal shift depends exclusively on the Fresnel
number of the focusing geometry. Consequently, for N @ W20, where W20
represents the maximumaxial coordinate where the termIN(W20) takes signi® cant
values, the parabolic factor is nearly constant over the region of interest, and then
the e� ect of the focal shift is absent. However, when the value of N is low, the
parabolic termrapidly increases for negative values of W20 within the focal region
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and then produces a relevant displacement of the axial-irradiance maximum
towards the screen plane.

Fromthe above reasoning, it follows that the magnitude of the focal shift e� ect
is governed by the value of the Fresnel number of the focusing set-up, but it also
depends onthe dimensions of the axial regionwhere the Fourier transformof q0( x )
takes signi® cant values. Therefore, it is apparent that the smoother the slope of the
Fourier transformof q0( x ), the greater is the in¯ uence of the factor (1- 2W20 /N)2

in the axial-irradiance distribution, and thus the greater is the magnitude of the
resulting focal shift. In this context, we hypothesize that a function of merit for
evaluating the focal shift in focusing set-ups shoulddependnot only onthe Fresnel
number of the geometry but alsoon a parameter that evaluates the capacity of the
screen to produce a slowly varying axial-irradiance pattern, as we discuss in
mathematical terms in the next section.

3. Th e foc al sh ift fu n c tion of m e rit

Since, as stated in the previous section, the axial region of interest is located in
the vicinities of the geometrical focus of the focusing set-up, it is then allowed to
follow a reasoning equivalent to that of [12, 13], by expanding the normalized
axial-irradiance distribution into a Taylor series, up to second-order approxima-
tion, that is

IN(W20) < IN(0) + IÂN(0) W20 +
IÂ ÂN (0)

2 W 2
20. (9)

Now, after astraightforward calculation, we obtain by using the moment theorem
the following parabolic expression for the normalized axial-irradiance distribution:

IN(W20) = 1- 4
N

W20 +
4

N2 (1- p 2s 2N2) W 2
20, (10)

where

s =
m2

m0
- m1

m0( ) 2

[ ]
1/2

(11)

is the standard deviation of the mapped transmittance q0( x ) , mn being the nth
moment of q0( x ) .

Now, by derivation of equation (10), we ® nd that the position and height of the
maximum of the quadratic axial-irradiance distribution are given by

W max
20 =

N /2
1- p 2(N s )2 (12)

and

IN(W max
20 ) =

p 2(N s )2

p 2(N s )2 - 1
, (13)

respectively. Finally, by combining equations (12) and (7) we ® nd that the relative
axial position of the irradiance maximum, that is the relative focal shift, is givenby

zmax

f
= - 1

p 2(N s )2 . (14)
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This relevant formula, which is a generalization of the analytical result
obtained for the circular aperture [1], indicates that the axial-irradiance distribu-
tion provided by any di� racting screen, with or without radial symmetry, exhibits
a focal shift whose magnitude depends exclusively on the function N s . So, it is
apparent that, independently of both the pro® le andthe scaleof the function t(r,µ) ,
any pair of focusing set-ups having the same value for the product N s exhibits the
same relative focal shift.

From the above result, it is then clear that the magnitude of the relative focal
shift is determined not only by geometrical parameters of the focusing set-up, that
is, by its Fresnel number, but alsoby the standard deviationof q0( x ) , which can be
interpreted as a measure of the e� ective width of the di� racting screen. In other
words, the function of merit N s evaluates not only the number of Fresnel zones of
the focusing geometry but also their e� ective contribution to the axial-irradiance
pro® le, and therefore to the magnitude of the relative focal shift.

Finally, we would like toremarkthat the functionof merit N s is alsouseful for
estimatingwhenafocusing set-up tends tosu� er the focusinge� ect known as focal
switch [10].

4. Exam ple s

To illustrate our approach we shall analyse the focal shift for three di� erent
kinds of di� racting screen, illuminated by a uniform monochromatic spherical
wave: the circular aperture, adi� racting screen which produces axial apodization,
and an axially superresolving screen.

For the case of the circular aperture the mapped transmittance is
q0( x ) = rect ( x ) , whose standard deviation is s c = 1/121/2. Then, according to
equation (14), the value of the relative focal shift, expressed in terms of the
Fresnel number, is

zmax

f
= - 12

p 2N2 , (15)

which, within quite a good approximation, is equivalent to the result reported by
Li and Wolf [1].

As an axially apodizing di� racting screen, we select the annular ® lter of the
mapped transmittance q0( x ) = cos ( p x ) rect ( p x ) (® gure 2), which provides an
optimum focal depth in the sense that it generates an axial-irradiance distribution
with minimum second moment for pre-speci® ed light throughput [14]. In this
case, the value of the standard deviation is s a = (14 - 2/p 2)1/2 < 0.2176. Then the
relative focal shift formula for this screen is given by

zmax

f
= - 21.12

p 2N2 . (16)

Note that, owing tothe inverse square relation between the relative focal shift and
the standard deviation of the mapped transmittance, the tendency of the axially
apodizing di� racting screen to the focal shift e� ect is greater than that of the
circular aperture.

Finally, as axially superresolving screens we chose the set of annular binary
® lters reported by MartõÂ nez-Corral et al. [13], which have the attribute of
producing tunable axial superresolution. The mapped transmittance for the family
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of ® lters is
q0( x ) = rect ( x ) - rect x

¹( ) , with 0 < ¹ < 1. (17)

The pro® le of these screens in the x coordinate and in its actual two-dimensional
(2D) representationare shown, for twovalues of the obscurationratioparameter ¹,
in ® gure 3.

The value of the standarddeviation for these ® lters is s s = [(¹2 + ¹ + 1) /12]1/2.
Thus the corresponding relative focal shift is

zmax

f
= - 12

p 2N2(¹2 + ¹ + 1) , (18)

whose magnitude, depending on the selected value of ¹, is clearly lower than that
corresponding to the circular aperture.
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(a)

(b)

Figure 2. Amplitude transmittance of the axially apodizing di� racting screen, q0( x ) =
cos ( p x ) rect ( x ) : (a) x -space representation: (b) radial coordinate representation.



To illustrate the in¯ uence of the parameter s on the capacity for producing a
slowly varying axial-irradiance pattern, and therefore on the magnitude of the
relative focal shift, in ® gures 4(a) and (b) we have plotted the function IN(W20)
and the relative focal shift respectively against N, for the above-described
di� racting screen. As a representative of the set of axially superresolving ® lters,
we have chosen that corresponding to ¹ = 1

3, which provides a signi® cant narrow-
ing of the central lobe of the axial-irradiance distribution but nodrastic increase in
the height of the secondary side lobes. From these ® gures it is clear that the
tendency of adi� raction screen tosu� er focal shift is closely related to is capacity
toproduce an axially apodizing e� ect. In other words, toobtain the same amount
of focal shift the Fresnel number in the axially superresolving case should be lower
than that corresponding to the case of the circular aperture and even lower than
that of the axially apodizing case.

Finally, we would like to point out that comparison between the results
provided by our formula and rigorous calculations already reported in the
literature can only be done for the case of the spherically illuminated circular
aperture [1] and the truncated Gaussian beam [11]. For the case of the circular
aperture, experimental measurements of the magnitude of the focal shift are also
available [15].

5. Conc lu sion s

We have presented an analytical approach for evaluating in quite a simple
way the relative focal shift in apodized systems. Speci® cally it has been stated
that the magnitude of the relative focal shift exclusively depends on the product
of the Fresnel number of the focusing geometry and the standard deviation of the
mapped transmittance of the di� racting screen. Moreover, we have shown that
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Figure 3. Two members of the family of axially superresolving di� racting screens of
equation (17): (a) mapped function q0( x ) for ¹ = 1

3 and ¹ = 2
3; (b) actual 2D

representation.



this product constitutes a function of merit for evaluation of the tendency of
a di� racting screen to su� er the focal-shift e� ect. Finally, we have illustrated
our approach by examining the focal shift produced by several di� racting
screens.
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(a)

(b)

Figure 4. (a) Normalized function IN(W20) corresponding to the proposed di� racting
screens; (b) relative focal shift against the Fresnel number of the focusing geometry
for the same screens as in (a).
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