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Abstract.  We report a quite simple analytical formula for the evaluation of
the focal shift in apodized systems, with or without rotational invariance.
Specifically it is shown that the magnitude of the focal shift is determined by
the product of the Fresnel number of the focusing geometry and the standard
deviation of a mapped version of the azimuthal average of the pupil transmuit-
tance. To illustrate our approach, several examples are examined.

1. Introduction

It is well known that, when a monochromatic uniform converging spherical
wave 1s diffracted by a circular aperture, the point of maximum irradiance in the
focal region is not at the geometrical focus but is displaced towards the aperture,
resulting in the so-called focal-shift effect [1-3] This effect has been found to
appear also in other geometries, for example in uniformly illuminated systems with
obscured pupils [4, 5] in focused Gaussian beams [6, 7] or, in general, in any type
of diffracting screen [8-10]

Although in general it has been recognized that the magnitude of the focal shift
is closely related to the Fresnel number of the focusing geometry, only for the
particular case of the circular aperture under uniform [1]or Gaussian [7] spherical
llumination has an approximate analytical formula been reported for its evalua-
tion. In connection with this last focusing geometry it is of relevance that the
formula, which was reported by Li [11]and is based on the focal-shift formulae for
the cases of the circular aperture and the non-truncated Gaussian beam, gives the
focal shift with quite good accuracy.

The aim of this paper is to present an analytical formulation for the evaluation
of the focal shift for the general case of spherically illuminated, rotationally
asymmetric diffracting screens, that is, for diffracting screens whose amplitude—
transmittance function #(r,6) does not exhibit, in general, rotational invariance.
The approach, which is based on the moment expansion of a mapped version of the
azimuthal average on the screen amplitude transmittance, permits us not only to
calculate in quite a simple way the focal shift but also to define a new merit

0950-0340/98 $12:00 © 1998 Taylor & Francis Ltd.



1672 M. Martinez- Corral et al.

Diffracting

Fgure 1.  Geometry of the focusing set-up.

function for estimating the tendency of a diffracting screen to suffer the focal-shift
effect.

In section 2 we formulate the basic theory for evaluating the axial-irradiance
distribution produced by an arbitrary, radially asymmetric diffracting screen, at
any Fresnel number. In section 3 we obtain an analytical formula that explicitly
depends on the product of the Fresnel number of the focusing geometry and the
standard deviation of the pupil, for evaluating in quite a simple way the relative
focal shift. Finally, in section 4 we illustrate our approach by calculating the focal
shift in some focusing geometries.

2. Basic theory

Let us start by considering a purely absorbing, rotationally asymmetric
diffracting screen, with amplitude transmittance ¢(r, 6), which is illuminated by a
uniform monochromatic spherical wave of focal length £, as shown in figure 1.
Then, the amplitude distribution along the optical axis in the vicinity of the focal
point, within the paraxial approximation, is [9]
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where ro 1s the maximum radial extent of the diffracting screen and z is the axial
coordinate as measured from the paraxial focal point F.
The integation of equation (1) over 6 gives
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where o
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is aradially symmetric function that represents the azimuthal average of the screen
amplitude transmittance ¢(r,6) for each value of r. From equation (2), one infers
that the axial behaviour of a radlally asymmetric focusing set-up is governed by the

one-dimensional (1D) Fourier transform of a radially symmetric version of the
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amplitude transmittance of the diffracting screen. In order to make the Fourier-
mapping relation clear, it is convenient to employ the next geometrical mapping

§=(m) -05, @@ =00, @

which translates the radial interval [0, rol into the 1D interval [- 0.5,0.5] Now, by
substituting equation (4) into equation (2) we find that, aside from an irrelevant
pre-multiplying phase factor, the axial amplitude distribution is

Ulz) =0(Wx) = M J. q0(8) exp (- 1208 dE, (5)
where
_1g
N =3 Y (6)

represents the Fresnel number of the focusing set-up, that is, the number of
Fresnel zones that are covered by the diffracting screen as viewed from the
geometrical focus, whereas the axial coordinate is expressed in terms of

Wy = (7)

Nz
20f+z2)°
which is the well-known defocus coefficient measured in units of wavelength.
As the aim of this work is the calculation of the position of the maximum of the
axial-irradiance distribution, next we express the axial behaviour of the focusing
set-up in terms of the normalized axial irradiance IN(W20) = (W) /1(0), namely

[ @exp-lanm@Wj w@d

2 2_
=( 1- I Wzo) IN(W). (8)

IN(W) =( 1- % Wzo)

From this equation it follows that the axial-irradiance pattern is determined from
the product of two terms. The first term IN(W20) involves the 1D Fourier
transform of the mapped transmittance ¢o(§ of the screen. Since ¢(r,6) and
consequently ¢o(§) are real and positive functions, this term is symmetrical
about the geometrical focus, W =0, where its maximum value is achieved.
The second term (1- 2W>20/N)~, which has W2 as the functional variable, is
responsible for the loss of symmetry in the axial-irradiance distribution and,
therefore, for the displacement of the irradiance maximum towards the screen
plane, as we discuss below.

From equation ( 8) it is clear that for a given profile of the diffracting sreen,
that 1s, for a fixed ¢o(&), the influence of the parabolic term (1- 2W2 /N)? and,
therefore the magnitude of the focal shift depends exclusively on the Fresnel
number of the focusing geometry. Consequently, for_N > W2, where Wao
represents the maximum axial coordinate where the term /N(W20) takes significant
values, the parabolic factor is nearly constant over the region of interest, and then
the effect of the focal shift is absent. However, when the value of N is low, the
parabolic term rapidly increases for negative values of W20 within the focal region
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and then produces a relevant displacement of the axial-irradiance maximum
towards the screen plane.

From the above reasoning, it follows that the magnitude of the focal shift effect
is governed by the value of the Fresnel number of the focusing set-up, but it also
depends on the dimensions of the axial region where the Fourier transform of go(§)
takes significant values. Therefore, it is apparent that the smoother the slope of the
Fourier transform of ¢o(&), the greater is the influence of the factor (1- 2W /N )?
in the axial-irradiance distribution, and thus the greater is the magnitude of the
resulting focal shift. In this context, we hypothesize that a function of merit for
evaluating the focal shift in focusing set-ups should depend not only on the Fresnel
number of the geometry but also on a parameter that evaluates the capacity of the
screen to produce a slowly varying axial-irradiance pattern, as we discuss in
mathematical terms in the next section.

3. The focal shift fanction of m erit

Since, as stated in the previous section, the axial region of interest is located in
the vicinities of the geometrical focus of the focusing set-up, it is then allowed to
follow a reasoning equivalent to that of [12, 13] by expanding the normalized
axial-irradiance distribution into a Taylor series, up to second-order approxima-
tion, that is 14(0)

IN(Wa) RINO) + I(0) W + 5= W3, ©)

Now, after a straightforward calculation, we obtain by using the moment theorem
the following parabolic expression for the normalized axial-irradiance distribution:

4 4
InN(Wyp)=1- N Who +— N2 (1- TCZGZN2 Wzo, (10)
where 12

_[m2_ (m)?
[ (3 n

is the standard deviation of the mapped transmittance qo(§), m» being the nth
moment of ¢o(§).

Now, by derivation of equation (10), we find that the position and height of the
maximum of the quadratic axial-irradiance distribution are given by

o __ NJ2

20 _T(Nc)z (12)
and
; T@Ncs2
IOV =i (13

respectively. Finally, by combining equations (12) and (7) we find that the relative
axial position of the irradiance maximum, that is the relative focal shift, is given by

Z max l
T TR (14
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This relevant formula, which is a generalization of the analytical result
obtained for the circular aperture [1] indicates that the axial-irradiance distribu-
tion provided by any diffracting screen, with or without radial symmetry, exhibits
a focal shift whose magnitude depends exclusively on the function Ne. So, it is
apparent that, independently of both the profile and the scale of the function #(r, 6),
any pair of focusing set-ups having the same value for the product N ¢ exhibits the
same relative focal shift.

From the above result, it is then clear that the magnitude of the relative focal
shift is determined not only by geometrical parameters of the focusing set-up, that
is, by its Fresnel number, but also by the standard deviation of ¢o(&), which can be
interpreted as a measure of the effective width of the diffracting screen. In other
words, the function of merit N evaluates not only the number of Fresnel zones of
the focusing geometry but also their effective contribution to the axial-irradiance
profile, and therefore to the magnitude of the relative focal shift.

Finally, we would like to remark that the function of merit N is also useful for
estimating when a focusing set-up tends to suffer the focusing effect known as focal
switch [10]

4. Examples

To illustrate our approach we shall analyse the focal shift for three different
kinds of diffracting screen, illuminated by a uniform monochromatic spherical
wave: the circular aperture, a diffracting screen which produces axial apodization,
and an axially superresolving screen.

For the case of the circular aperture the map?ed transmittance is
q0(§ =rect (§, whose standard deviation is oc = 1/12!/% Then, according to
equation (14), the value of the relative focal shift, expressed in terms of the
Fresnel number, is

= 19

which, within quite a good approximation, is equivalent to the result reported by
Li and Wolf [1]

As an axially apodizing diffracting screen, we select the annular filter of the
mapped transmittance ¢o(&) = cos (n€) rect (r) (figure 2), which provides an
optimum focal depth in the sense that it generates an axial-irradiance distribution
with minimum second moment for pre—speaﬁed light throughput [14] In this
case, the value of the standard deviation is oa = G- 2/m)!'”? ~0.2176. Then the
relative focal shift formula for this screen is given by

zmax _ 2112

f N2

Note that, owing to the inverse square relation between the relative focal shift and

the standard deviation of the mapped transmittance, the tendency of the axially

apodizing diffracting screen to the focal shift effect is greater than that of the
circular aperture.

Finally, as axially superresolving screens we chose the set of annular binary

filters reported by Martinez-Corral et al. [13] which have the attribute of

producing tunable axial superresolution. The mapped transmittance for the family

(16)
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Figure 2. Amplitude transmittance of the axially apodizing diffracting screen, ¢o(&) =
cos (1) rect (§): () &space representation: (b) radial coordinate representation.

of filters is
q0(§) = rect (&) - rect(f), withO<pu < 1. (17)

The profile of these screens in the & coordinate and in its actual two-dimensional
(2D) representation are shown, for two values of the obscuration ratio parameter 4,
in figure 3.

The value of the standard deviation for these filters is os = [(u2 +u+1)/ 12]1/ 2,
Thus the corresponding relative focal shift is

Zmax __ 12
T T RNt 1) (18)

whose magnitude, depending on the selected value of 4, is clearly lower than that
corresponding to the circular aperture.
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gure 3. Two members of the family of axially superresolving diffracting screens of
equation (17): («) mapped funcfion ¢o(§ “for w =% and u =% (b) actual 2D
representation.

To illustrate the influence of the parameter o on the capacity for producing a
slowly varying axial-irradiance pattern, and therefore on the magnitude of the
relative focal shift, in figures 4(a) and (b) we have plotted the function In(W20)
and the relative focal shift respectively against N, for the above-described
diffracting screen. As a representative of the set of ax1a11y superresolving filters,
we have chosen that corresponding to 4 =13, which provides a significant narrow-
ing of the central lobe of the axial-irradiance distribution but no drastic increase in
the height of the secondary side lobes. From these figures it is clear that the
tendency of a diffraction screen to suffer focal shift is closely related to is capacity
to produce an axially apodizing effect. In other words, to obtain the same amount
of focal shift the Fresnel number in the axially superresolving case should be lower
than that corresponding to the case of the circular aperture and even lower than
that of the axially apodizing case.

Finally, we would like to point out that comparison between the results
provided by our formula and rigorous calculations already reported in the
literature can only be done for the case of the spherically illuminated circular
aperture [1] and the truncated Gaussian beam [11] For the case of the circular
aperture, experimental measurements of the magnitude of the focal shift are also
available [15]

5. Conclusions

We have presented an analytical approach for evaluating in quite a simple
way the relative focal shift in apodized systems. Specifically it has been stated
that the magnitude of the relative focal shift exclusively depends on the product
of the Fresnel number of the focusing geometry and the standard deviation of the
mapped transmittance of the diffracting screen. Moreover, we have shown that
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Figure 4. (a) Normalized function /N(W20) corresponding to the proposed diffracting
screens; (b) relative focal shift against the Fresnel num%)er of the focusing geometry
for the same screens as in (a).

this product constitutes a function of merit for evaluation of the tendency of
a diffracting screen to suffer the focal-shift effect. Finally, we have illustrated
our approach by examining the focal shift produced by several diffracting
screens.
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