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Effective Fresnel-number concept for evaluating
the relative focal shift in focused beams
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We report on an analytical formulation, based on the concept of effective Fresnel number, to evaluate in a
simple way the relative focal shift of rotationally nonsymmetric scalar fields that have geometrical focus and
moderate Fresnel number. To illustrate our approach, certain previously known results and also some new
focusing setups are analytically examined. © 1998 Optical Society of America [S0740-3232(98)00902-8]

OCIS codes: 050.1940, 220.2560.
1. INTRODUCTION
The evaluation of the electromagnetic field diffracted by a
coherently illuminated circular aperture has constituted
the aim of several research efforts over the last few de-
cades. Classical studies,1,2 which are based on the Debye
integral representation of focused fields, reveal that when
a monochromatic, uniform, converging spherical wave is
diffracted by a circular aperture, the irradiance distribu-
tion in the focal region is symmetric about the geometri-
cal focus, and the point of maximum irradiance is located
at the focal point. However, since the description in the
focal region by this representation is valid only when the
Fresnel number of the focusing geometry is much higher
than unity,3 these studies could not explain the shift to-
ward the aperture of the irradiance maximum, which, un-
der certain circumstances, was found to appear by some
researchers during the 1970’s.4–6

It was in the early 1980’s when, on the basis of the
Fresnel diffraction integral, it was analytically
established,7–9 and experimentally verified,10 that the
magnitude of the shift suffered by the axial irradiance
peak, i.e., the magnitude of the so-called focal-shift effect,
is governed by the Fresnel number of the focusing geom-
etry. More recently, it has been recognized that the
focal-shift effect is also present in systems with an ob-
scured pupil,11,12 in axially superresolving setups,13 and,
in general, in any type of diffracting screen.14,15 It has
also been shown that this effect appears not only along
the optical axis but also on any line directed toward the
geometrical focus of the incident spherical wave front.16

Specifically, in Ref. 16 it is shown that the irradiance dis-
tribution along a line is determined by the projection of
the pupil function onto the line. So both the irradiance
profile and the magnitude of the focal shift depend on the
selected line.

On the other hand, it is also well established that the
focal-shift effect appears not only for uniformly illumi-
nated diffracting screens but also when some nonuniform
focused beams illuminate a circular aperture. In this
sense it was found that when a monochromatic Gaussian
beam is focused by a thin lens, the point of maximum ir-
radiance is not located at the geometrical focus but is dis-
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placed toward the lens.17–19 More recent studies have
shown that this focal-shift effect is governed by both the
so-called Gaussian Fresnel number,20 which is associated
with the width of the incident beam, and the truncation
parameter,21,22 which evaluates the ratio between the ra-
dius of the lens and the beam width.

The goal of this paper is to report on an analytical for-
mulation to evaluate the relative focal shift for the gen-
eral class of rotationally nonsymmetric scalar fields that
have focus in the sense of geometrical optics. The formu-
lation, which is based on an extension of the concept of ef-
fective Fresnel number applied to any focused beam, per-
mits us to evaluate in a quite simple way the focal shift
that appears in both converging and diverging beams and
for truncated and nontruncated focusing geometries.

For describing our approach, in Section 2 we formulate
the basic theory for evaluating the axial irradiance distri-
bution corresponding to a focused beam. In Section 3 we
define the effective Fresnel number over the exit plane as-
sociated with any focused beam, and we obtain a simple
analytical formula, which explicitly depends on this pa-
rameter, for evaluating the relative focal shift. In Sec-
tion 4 we analyze the role of the effective Fresnel number
of a focused beam, which is shown to be related to the ef-
fective width of the beam. Finally, in Section 5 we illus-
trate our approach by examining the focal shift in some
highly exemplifying focusing geometries.

2. AXIAL IRRADIANCE DISTRIBUTION IN
FOCUSED BEAMS
Let us start by considering a focused beam, i.e., a mono-
chromatic scalar wave field that has focus in the sense of
geometrical optics. Therefore its amplitude distribution
U(r, u) in a given plane transversal to the propagation
direction, referred to as the reference plane for the re-
mainder of the present paper, can be expressed as the
product of a spherical wave of focal length f and a real
nonnegative two-dimensional function t(r, u). In math-
ematical terms,

U~r, u! 5
exp~2ikf !

f
expS 2i

k
2 f

r2D t~r, u!, (1)
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where k 5 2p/l represents the wave number of the light.
Note that this rather general formalism corresponds to

the beams that provide an irradiance peak in the focus of
a spherical wave and describes, among others, two quite
typical focusing geometries in optics: (1) the case of a
purely absorbing diffracting screen, with or without ra-
dial symmetry, illuminated by a monochromatic spherical
wave and (2) the situation corresponding to a truncated or
nontruncated spherical Gaussian beam. Two examples
of these situations are illustrated in Fig. 1.

To evaluate the axial amplitude distribution of the fo-
cused beam, we particularize the Fresnel–Kirchhoff dif-
fraction formula for the axial points,7,9 i.e.,

h~z ! 5
exp~ikz !

ilf~ f 1 z ! E0

2pE
0

`

t~r, u!

3 expF2i2p
z

2lf~ f 1 z !
r2Gr drdu, (2)

where z denotes the axial coordinate as measured from
the paraxial focal point F.

At this point it is convenient to point out that the axial
distances involved in Eq. (2) are directed. Their direction
is determined by the point of the arrow (see Fig. 1). Note
that both f and z are positive distances in Fig. 1. This
fact allows us to deal with diverging focusing beams
( f , 0) and to describe the virtual diffraction region
( f 1 z , 0).

Fig. 1. Two typical examples of scalar fields that have geometri-
cal focus: (a) radially nonsymmetric diffracting screen illumi-
nated by a monochromatic spherical wave with focal length f, (b)
truncated spherical Gaussian beam.
It is convenient to perform two mathematical manipu-
lations of Eq. (2). First, we carry out the angular inte-
gration to obtain

h~z ! 5 2p
exp~ikz !

ilf~ f 1 z ! E0

`

t0~r !

3 expF2i2p
z

2lf~ f 1 z !
r2Gr dr, (3)

where

t0~r ! 5
1

2p E
0

2p

t~r, u!du (4)

is a radially symmetric function that stands for the azi-
muthal average of t(r, u). Of course, any pair of focused
beams that yield the same azimuthally averaged function
t0(r) generate an identical axial irradiance
distribution.23,24

The second manipulation consists in the geometrical
mapping

z 5 r2, t0~r ! 5 q0~z!, (5)

which explicitly converts the integral in Eq. (3) into a one-
dimensional (1-D) Fourier transform, namely,

h~z ! 5
p

lf~ f 1 z ! E2`

`

q0~z!expF2i2p
z

2lf~ f 1 z !
zGdz,

(6)

where some irrelevant premultiplying constant phase fac-
tors have been omitted. Note that the lower limit in the
integral has been extended to 2`, since the function
q0(z) is identically zero for z , 0.

Next, we recognize that the scale factor of the 1-D Fou-
rier transform is related to the axial variable z through
the relation

u 5
z

2lf~z 1 f !
, (7)

which is closely related to the axial coordinate defined by
Lommel.2 Thus the axial amplitude distribution of the
focused beam can be expressed as

h~z ! 5 Q~u !

5
p

lf 2 ~1 2 2lfu !E
2`

`

q0~z!exp~2i2puz!dz. (8)

Finally, since our aim in this work is to calculate the
position of the axial point of maximum irradiance, we ex-
press the axial behavior of the focused beam in terms of
the normalized axial irradiance distribution, which is ob-
tained by simply dividing the squared modulus of Eq. (8)
by the irradiance at the paraxial focal point u 5 0.
Mathematically,

I N~u ! 5 ~1 2 2lfu !2

U E
2`

`

q0~z!exp~2i2puz!dzU2

F E
2`

`

q0~z!dzG2
.

(9)



Martı́nez-Corral et al. Vol. 15, No. 2 /February 1998 /J. Opt. Soc. Am. A 451
From Eq. (9) it follows that the axial irradiance distri-
bution of the focused beam is governed by the product of
two terms that can be understood, from the point of view
of the Huygens–Fresnel principle,9,13 in the following
way. The first term, which involves the 1-D Fourier
transform of q0(z), describes at any axial point the inter-
ference by the different Huygens spherical wavelets pro-
ceeding from all points of the reference plane. Since
t(r, u), and consequently q0(z), are real and positive
functions, the Huygens wavelets arrive in phase at the
geometrical focus, and then the maximum of this term is
achieved at the origin. However, as the secondary wave-
lets propagate, their amplitude suffers an attenuation
that is proportional to the inverse covered distance. This
attenuation is described in Eq. (9) by the term
(1 2 2lfu)2.

It is then apparent that the competition between these
two terms produces a displacement of the axial irradiance
peak toward the reference plane, resulting in the well-
known focal-shift effect, whose magnitude we evaluate in
Section 3.

3. RELATIVE FOCAL-SHIFT FORMULA
To obtain the relative position of the greatest value of the
axial irradiance distribution, one should obtain the roots
of the equation

d I N /du 5 0 (10)

and select from among them the absolute maximum.
However, in many cases of interest an exact analytical re-
sult cannot be obtained by this method. To avoid this
drawback, we propose to expand the normalized irradi-
ance distribution into a Taylor series. Taking into ac-
count that the region of interest is located in the vicinities
of the geometrical focus (u 5 0), we may neglect the
third- and higher-order terms and restrict the series to a
quadratic approximation, i.e.,

IN~u ! 5 I N~0 ! 1 I N8 ~0 !u 1
I N9 ~0 !

2
u2. (11)

Now, by straightforward (albeit cumbersome) calcula-
tion, we obtain by making use of the moment theorem25

the following approximated parabolic expression for the
normalized axial irradiance distribution:

IN~u ! 5 1 2 4lfu 1 4~l2f 2 2 p2s 2!u2, (12)

where

s 5 Fm2

m0
2 S m1

m0
D 2G1/2

(13)

stands for the standard deviation of the mapped function
q0(z) and

mn 5 E
2`

`

q0~z!zn dz, (14)

denotes the nth moment of q0(z).
By virtue of Eq. (12), we find that the position and the

height of the maximum of the quadratic axial irradiance
distribution are given, respectively, by
umax 5
1

2lf

1

1 2 p 2Neff
2 , (15)

IN~umax! 5
p2Neff

2

p 2Neff
2 2 1

, (16)

where we have introduced a new parameter, named here
the effective Fresnel number of the focused beam, defined
as

Neff 5 s/lf. (17)

This parameter characterizes any focused beam at the
reference plane and is proportional to the standard devia-
tion of q0(z), which can be interpreted as a measure of
the effective width of the beam.

Now, by combining Eqs. (7) and (15), we find that the
value of the relative focal shift is given by

zmax

f
5 2

1

p2Neff
2 . (18)

This relevant formula, which is a generalization of the
results obtained for both the circular aperture7,9 and the
Gaussian beam,20,21 indicates that any scalar field belong-
ing to the general class of focused beams suffers a relative
focal shift that, within the second-order approximation, is
proportional to the inverse square of the effective Fresnel
number of the beam. So it is apparent that, indepen-
dently of both the profile and the scale of the function
t(r, u) and the sign of the focal length f, any pair of fo-
cused beams having the same value for Neff , and conse-
quently the same effective width, exhibit the same rela-
tive focal shift.

The minus sign in Eq. (18) indicates that the distances
zmax and f have opposite sign. Therefore, either in a con-
verging ( f . 0) or in a diverging ( f , 0) focusing geom-
etry, the displacement of the axial irradiance peak is al-
ways toward the reference plane. Note that in the
diverging case the virtual focal shift can be viewed by fo-
cusing a microscope with low magnifying power behind
the reference plane, assuming that the optical instrument
has a numerical aperture large enough not to introduce
significant diffraction effects on its own account. It is im-
portant to remark that, to the best of our knowledge, the
virtual focal shift has been referred to only by Nye26 when
he studied the light diffracted by small unstopped lenses.

For illustrating the variation of the focal-shift effect
with the value of the effective Fresnel number of the fo-
cused beam, in Fig. 2 we have plotted the relative focal
shift against Neff . From this figure we infer that the
modulus of the relative focal shift greatly increases as Neff
decreases, being, for example, of the order of 0.1% when
Neff 5 10 and 2.5% when Neff 5 2.

Concerning the accuracy of Eqs. (16) and (18), it can be
easily shown (see Appendix A) that the relative error in
the evaluation of the relative focal shift, resulting from
the parabolic approximation, is given by

D~zmax!

uzmaxu
5

2

p 2Neff
2 2 1

, (19)

whereas the error in the estimation of the height of the
irradiance peak is



452 J. Opt. Soc. Am. A/Vol. 15, No. 2 /February 1998 Martı́nez-Corral et al.
DImax 5
2p 2Neff

2

~p 2Neff
2 2 1 !3

. (20)

We conclude from Eqs. (19) and (20) that both errors
depend solely on the effective Fresnel number of the fo-
cused beam. In particular, the variation of the ratio
D(zmax) / uzmaxu with Neff is as indicated in Fig. 3. The ex-
amination of the curve in Fig. 3 reveals that the error is
low for moderate values of Neff (for example, when Neff
> 2.0, the error is less than 5%; and it is even less than
1% if Neff > 4.5). On the contrary, for N , 1,
D(zmax)/uzmaxu increases dramatically as N decreases.

4. EFFECTIVE FRESNEL-NUMBER
ANALYSIS
In Section 3 we established that the position and the
height of the axial irradiance peak for a general focused
beam are determined by a single parameter, the effective
Fresnel number of the focusing geometry. Hence it
seems to be convenient to investigate more the role of the
effective Fresnel-number parameter. To this end we now
recall the interpretation of the axial irradiance distribu-
tion in terms of the Huygens–Fresnel superposition prin-
ciple, as was done in Section 2. Note that, arising from

Fig. 2. Relative focal shift as a function of the effective Fresnel
number of the focused beam.

Fig. 3. Relative error associated with the focal shift determined
by Eq. (18) versus the effective Fresnel number of the focused
beam.
this principle, when we deal with a large pupil function
t(r, u) that involves a huge number of Fresnel zones in
the process of Huygens wavelet interference, the 1-D Fou-
rier transform in Eq. (9) provides a very sharp function
centered at the geometrical focus u 5 0. So its value is
negligible unless u is very small. In this way the factor
(1 2 2lfu)2 is approximately unity in the region where
the 1-D Fourier transform is nonzero, and consequently it
can be ignored. In this case the axial irradiance distri-
bution is fixed only by the interference term and is sym-
metric around the geometrical focus, since the Fourier
transform of a real function is Hermitian. However,
when t(r, u), and consequently q0(z), are narrow, which
implies that a small number of Fresnel zones are involved
in the interference process, the Fourier transform gives
rise to a function that decreases smoothly in the neighbor-
hood of the paraxial focal point. Now the attenuation
term (1 2 2lfu)2 is not unity in the whole region in
which the Fourier transform is clearly different from zero.
The presence of this term, whose value increases with
negative values of the product fu, shifts the irradiance
peak toward the reference plane, resulting in the focal-
shift effect.

It is then clear that the axial irradiance distribution of
the focused beam, and thus the relative focal shift, are de-
termined by both the number of Fresnel zones involved in
the interference process and their relative contribution.
In other words, the axial pattern is governed by the effec-
tive width of the beam at the reference plane. In this
context we conclude that the effective Fresnel number,
which is proportional to the standard deviation of the
function q0(z), evaluates in a certain way the effective
number of Fresnel zones in the focusing geometry in-
volved in the above process, and therefore it also takes
into account the importance of the relative contribution of
each individual zone in the final result.

5. APPLICATION TO SEVERAL FOCUSING
GEOMETRIES
We start by considering the case of an annular aperture of
inner and outer radii ea (0 < e , 1) and a, respectively,
illuminated by a monochromatic spherical wave of focal
length f. According to Eq. (17), the effective Fresnel
number for this focusing geometry is

Neff 5
~1 2 e 2!

A12

a2

lf
. (21)

Note that the above effective Fresnel number is indeed,
apart from a proportionality factor 1/A12, equal to the
classical Fresnel number for annular focusing setups,11,15

which is given by

N 5
~1 2 e 2!a2

lf
, (22)

which implies that, because of the close connection be-
tween these concepts, our formalism will allow us to re-
produce the classical results, as we show next.

By substituting the value of Neff into Eqs. (16) and (18),
we find that the relative position and the height of the
axial irradiance peak are
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zmax

f
5 2

12

p2N2 , (23a)

IN~zmax! 5
p2N2

p2N2 2 12
, (23b)

which are expressed in terms of the classical Fresnel
number.

We emphasize that, if we simply set e 5 0, the above
equations are valid, in particular, for describing the focal
shift for the quite typical case of the circular aperture.
However, although equivalent equations have been de-
rived elsewhere7,9 for converging illumination, it was not
recognized that they are also valid for describing the vir-
tual focal-shift effect when the circular aperture is illumi-
nated by a diverging monochromatic spherical wave.

As a second example we consider the case of a spherical
Gaussian beam that illuminates a circular aperture of ra-
dius a, f being the radius of curvature of the beam at the
aperture plane. To carry out this study, it is convenient
to introduce the truncation parameter of the focusing ge-
ometry, defined by

a 5 ~a/v!2, (24)

where v stands for the width of the Gaussian beam at the
reference plane. The expression for Neff in this case is

Neff 5
v2

lf H 1 2
a2 exp~a!

@1 2 exp~a!#2J 1/2

. (25)

Now, by substituting Eq. (25) into Eq. (18), we find that
the relative focal shift corresponding to a truncated
spherical Gaussian beam is given, in terms of the trunca-
tion parameter, by

zmax

f
5 2

lf

p 2v2$1 2 a2 exp~a!/@1 2 exp~a!#2%
. (26)

As in the previous example, next we analyze some par-
ticular case. First, for strong truncation, the width of the
incident beam is much higher than the radius of the cir-
cular aperture. In this case the value of the truncation
parameter a is almost zero. By performing the limit
when a tends to zero in Eqs. (25) and (26), we achieve the
effective Fresnel number and the relative focal shift cor-
responding to the uniformly illuminated circular aper-
ture.

In the other extreme case, corresponding to an unaper-
tured Gaussian beam (weak truncation), the coefficient a
tends to infinity. Here the limit value for the effective
Fresnel number is

Neff 5 v2/lf. (27)

This expression is just the same as that of the classical
Fresnel number defined for focused Gaussian beams.20–22

By substitution of this value into Eq. (18), the relative fo-
cal shift for unapertured Gaussian beams is

zmax

f
5 2

l2f 2

p 2v4 , (28)

which reproduces in a quite good approximation the pre-
viously known result.27
Up to now we have illustrated our approach by reexam-
ining, with our approach, the general case of the annular
aperture or the truncated Gaussian beam, which have in-
deed been studied in the literature. Now we go one step
further and investigate the axial behavior for two diffract-
ing screens, reported in the optical literature for certain
applications, when they are illuminated with a monochro-
matic spherical wave front of focal length f.

The first screen under study is that of mapped trans-
mittance

q0
s ~z! 5 H 4@~z/a2! 2 0.5#2 if 0 < z < a2

0 otherwise
, (29)

which produces a superresolving axial irradiance
pattern.28 The mapped transmittance for the second se-
lected diffracting screen is

q0
a~z! 5 H 1 2 q0

s ~z! if 0 < z < a2

0 otherwise
, (30)

which produces an axial apodization effect.29 The pro-
files of both screens in the z coordinate and in the radial
coordinate are shown in Fig. 4. It is straightforward to
obtain analytically the standard deviation, and conse-

Fig. 4. Amplitude transmittance of the axially superresolving
diffracting screen (solid curves) and the axially apodizing para-
bolic filter (dashed curves): (a) z-space representation, (b) radial
coordinate representation.
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quently the corresponding effective Fresnel number, for
these quadratic functions. We have

Neff
s 5 A 3

20
a2

lf
, (31a)

Neff
a 5

1

A20

a2

lf
. (31b)

When we take into account Eq. (18), the relative position
of the axial irradiance peak is given, respectively, by

zmax
s

f
5

220

3p 2 S lf

a2D 2

, (32a)

zmax
a

f
5

220

p 2 S lf

a2D 2

. (32b)

Note that if all geometric parameters in both optical set-
ups are equal, it is apparent that zmax

a 5 3zmax
s . There-

fore the axially apodizing diffracting screen is three times
more sensitive to the focal-shift effect than that which
produces axial superresolution. This is what one would
expect, since, as we mentioned in Section 4, the wider the
central lobe of the axial-distribution irradiance, the
greater the amount of the focal shift. In this work we
recognize that this general statement can be quantified
by means of the effective Fresnel-number parameter.

6. CONCLUSIONS
We have presented a quite simple analytical formulation
for evaluating, in a second-order approximation, the rela-
tive focal shift for any focused beam with or without ra-
dial symmetry. The proposed formula depends solely on
a beam parameter named the effective Fresnel number of
the focused beam. This important result means that any
pair of focused beams with the same effective Fresnel
number show the same relative focal shift, independently
of their geometric parameters and their transverse pro-
file. Moreover, our formalism also permits us to quantify
the virtual focal-shift effect for any diverging focused
beam. Finally, we have illustrated our approach by dis-
cussing the focal-shift effect shown by different focusing
geometries.

APPENDIX A
The error involved in the approximation carried out in
Eq. (11), i.e., the modulus of the difference between the
exact axial irradiance and the value provided by the qua-
dratic approximation, is given by the absolute value of the
so-called Lagrange remainder, namely,

R~I N ; 0, u ! 5
I N

- ~u0!

6
u3, (A1)

where u0 is an axial-coordinate value between 0 and u.
If we assume that the normalized irradiance distribu-

tion is a slowly varying function and that the axial coor-
dinate u under investigation is close to the paraxial focus,
the approximation
I N
- ~u0! ' I N

- ~0 ! 5 96p 2s 2lf. (A2)

may be applied. If we particularize under this assump-
tion the value of the Lagrange remainder for u 5 umax ,
we obtain that the error in the estimation of the height of
the irradiance peak, which is derived by inserting Eq. (15)
and relation (A2) into Eq. (A1), is

DImax 5 D@IN~umax!# 5
2p2Neff

2

~p2Neff
2 2 1 !3

. (A3)

For obtaining the error in the evaluation of the relative
focal shift, first we express this parameter in terms of
IN(umax) by combining Eqs. (16) and (18). In this way
Eq. (18) can be written as

zmax

f
5

1
IN~umax!

2 1. (A4)

Now, by merely applying standard error propagation
techniques, we obtain

DS zmax

f D 5
2

p 2Neff
2

1

p 2Neff
2 2 1

. (A5)

Finally, the relative error in the determination of the
relative focal shift is achieved by simply dividing Eq. (A5)
by the absolute value of Eq. (18). Thus

D~zmax!

uzmaxu
5

2

p 2Neff
2 2 1

. (A6)
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