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Abstrac t. We report on a general analytical procedure to analyse the axial
focusing properties of uniform cylindrical waves truncated by a rectangular
window. The resulting on-axis di� raction pattern explicitly depends on the
square of the window height-to-width ratio. Depending on the value of this
parameter, di� erent kinds of axial behaviour are observed. In particular, it is
found that for low values of this parameter and low Fresnel number, instead of
the expected focal-shift e� ect, an inverse focal-shift phenomenon can appear,
i.e. the maximum of the axial-irradiance distribution is displaced further away
from the window.

1. In trod uc tion

The study of the focusing properties of spherical waves has been a subject of
increasing interest over the last fewdecades [1± 3]. Speci® cally, in the early 1980s it
was analytically established [4± 6], and experimentally veri® ed [7] that when a
monochromatic, uniform, converging spherical wave is di� racted by a circular
aperture, in alow-Fresnel-number geometry, the maximumof the axial irradiance
distribution is shifted toward the aperture. More recently it has been recognized
that the focal-shift e� ect alsoappears in apodized systems [8± 11]and an analytical
formula has been reported for its evaluation [12].

This interesting e� ect has been found to appear also in other geometries, for
example in truncated or nontruncated focused beams [13± 17], in spherically
aberrated focusing set-ups [18± 20] and even in uniformly illuminated di� ractive
optical elements [21, 22].

In spite of this extensive analysis of the focal-shift phenomenon, not toomuch
attentionhas been paid tothe caseof truncatedcylindrical waves [19], whichare of
interest in, for example, optical signal processing [23, 24], line-focusing optics to
produce a plasma sheet [25, 26], phase singularities generation in optical beams
[27]and astigmatic laser mode inverters [28, 29], where anamorphic elements are
extensively used.

In this paper, we developananalytical formulation that fully describes the axial
behaviour of cylindrical waves truncated by a rectangular window. Depending on
the value of the here de® ned truncation ratio of the window, and considering a
low-Fresnel-number focusing geometry, three di� erent types of axial behaviour
will be found. Speci® cally it will be shown that when the truncation in one
Cartesian direction is neglected, a focal-shift e� ect appears, and an approximated
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formula for its evaluation is presented. On the contrary, when the truncation ratio
is low, anew e� ect, the inverse focal shift, can appear. For intermediate values of
the truncation ratio the axial-irradiance distribution has asteep-peaks structure in
which the position of the maximum strongly depends on this parameter.

In Section 2 we formulate the basic theory for evaluating the axial-irradiance
distribution for cylindrical waves. In Section 3 we generalize this analysis to the
case of a two-dimensional (2D) rectangular truncation by giving an analytical
formula that fully describes the corresponding axial behaviour. This formula will
allow us to ® nd that, under certain circumstances, an inverse focal-shift e� ect can
appear. In Section 4 we carry out a thorough study of this new phenomenon, and
some numerically evaluated examples are shown.

2. Axial-irrad ian ce d istribu tion

We start by considering auniform, monochromatic plane wave of wavelength ¸

illuminating a cylindrical lens with a focal length denoted by fx, as depicted in
® gure 1. Since the cylindrical lens produces over the emerging ® eld a wave-front
curvature along the x-axis, its amplitude transmittance can be expressed as

t x,y p x,y exp j k
2fx

x2 , 1

where k 2p /¸ is the wave number, whereas the pupil function, p x,y , gives the
window transmittance of the focusing element.

According to the Fresnel di� raction formula [30], the three-dimensional (3D)
amplitude distribution in the focal region is given by
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Figure 1. Schematic layout of the cylindrical focusing arrangement. The origin of the
axial coordinate is taken at the focus F of the cylindrical lens.



u x,y,z A
exp jk z fx

j¸ z fx
t x0,y0

exp j k
2 z fx

x x0
2 y y0

2 dx0 dy0, 2

where A is a positive constant corresponding to the amplitude of the uniform
illuminating ® eld and z is the axial coordinate as measured from the geometrical
focus, F, of the cylindrical lens.

To obtain the amplitude distribution along the optical axis, we substitute
equation (1) into equation (2), then we set x y 0, giving

U z A
exp jk z fx

j¸ z fx
p x0,y0

exp j k
2fx

z
z fx

x2
0 exp j k

2 z fx
y2

0 dx0 dy0. 3

Inthe ideal caseof anunaperturedcylindrical lens, p x,y 1, it is easy to® nd,
by using the analytical relation

exp j k
2s

t2 dt j¸s 1/2, 4

that the axial-irradiance distribution is given by

I z U z 2 A2 f /z . 5

Then, the maximum irradiance is located at the focus of the lens, z 0, where a
singularity caused by the unlimited extent of the 2Dpupil function appears. Also,
the dependence on the axial coordinate is inversely linear, which di� ers from the
well-known inverse square law associated to uniform spherical waves. Therefore,
the attenuation su� ered by acylindrical wave is weaker than that corresponding to
a spherical ® eld.

In a more realistic case, the ® nite extent of the cylindrical lens must be taken
into account. Then we start by considering the case of a pupil aperture which is
much higher along the y-axis, so that the truncation su� ered by the ® eld in this
direction may be neglected. In this case we are allowed to carry out the
substitution p x,y rect x/ax , where ax denotes the extent of the slit-like
pupil window. Therefore, according to equation (3) and by using again the
relationship in equation (4), the axial-irradiance distribution can be written by

I z A2 1
¸ z fx

ax /2

ax /2
exp j k

2fx

z
z fx

x2
0 dx0

2

. 6

As in conventional image formation formalism, it is convenient to express the
out-of-focus behaviour of the focusing architecture in terms of the so-called
defocus coe� cient [31]. This coe� cient is a small angle approximation
a2

x f 2
x for the distance between the wavefront created by the cylinder lens

and a similar cylindrical wavefront with a curvature centred at the observation
point P, taken at a point on the edge of the lens aperture along an axis normal to
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the cylinder axis, and along the direction normal tothe latter wavefront (see ® gure
2). In mathematical terms [32]

W20
Nx

2
z

z fx
, 7

where

Nx
ax /2 2

¸fx
, 8

stands for the so-called Fresnel number for the truncated, cylindrical focusing
geometry, Nx. This parameter accounts for the number of cylindrical halfwave
zones covered by the lens as viewed from its focus.

Then, by performing now an appropriate change of variables,

x 2x0 /ax, 9

and by normalizing to the value at the focus, the axial-irradiance distribution is
determined by

IN W20
I W20

I 0 1 2W20

Nx

1
2

1

1
exp j2p W20z 2 dz

2

1 2W20

Nx
w W20

2. 10

In other words, the defocus coe� cient W20 is Nx /2 times the ratio of the
distance from the origin to the ® eld point over the distance from the lens to the
® eld point. Of course, it does not vary linearly as the ® eld point moves away from
the lens along the optical axis.
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Figure 2. Schematic evaluation of the defocus coe� cient W20 as the optical distance,
attained at the edge of the lens window and expressed in units of the wavelength,
between the cylindrical wavefront produced by the lens, SF , and that whose focus is
located at the axial point P.



From equation (10) it is inferred that IN W20 comprises the product of two
terms. The ® rst term describes the attenuation su� ered by cylindrical waves as
they propagate. This term is given by the function 1 2W20 /Nx , which is
centred at the axial coordinate W20 Nx /2, which corresponds, of course, to the
axial position z . The second term describes the di� raction e� ects due to the
® nite extent of the windowin the x-direction, and is givenby the squared modulus
of the function w W20 . This function may be analytically expressed by [33]

w W20
1 j

4
erf 1 j p W20

1/2

W20
, 11

where erf � is the error function, de® ned as

erf s
2
p

s

0
exp t2 dt. 12

Although w W20
2 is an even function, the axial-irradiance distribution given

by equation (10) is asymmetric in terms of z about the focal plane, z 0, for two
reasons. First, the defocus coe� cient of equation (7) is asymmetric about the focal
point, i.e. W20 z W20 z . Despite the asymmetric transformation su� ered
by this term, the maximum value of w W20

2 remains located at the origin.
Second, the linear dependence on 1 2W20 /Nx increases the irradiance for
W20 < 0, and so z < 0, within the focal region, and decreases it for W20 > 0.
Therefore, the axial maximum appears shifted towards the pupil plane, resulting
in the so-called focal shift e� ect for cylindrical waves, as described in reference
[19].

However, W20 is antisymmetric about z 0, i.e. W20 z W20 z , for very
small z where it is approximately given by W20 Nxz /2fx. Now, for very large Nx

the depth of focus given by the secondtermin equation (10) is small sothat for the
small range of z within the focal spot, W20 is antisymmetrical. In this case, the
term 1 2W20 /Nx tends to unity, so that the irradiance pattern is symmetric
about the geometrical focus, and the maximum irradiance is located at the origin.
As soonas the Fresnel number decreases the depthof focus is very large sothat the
asymmetry in W20 yields the axial-irradiance distribution asymmetric, and the
asymmetry in the linear term shifts the peak of the focal spot towards the lens.

To illustrate this e� ect, we have depicted in ® gure 3 the normalized axial-
irradiance distribution for di� erence values of Nx. It is apparent from this ® gure
that the lower is the value of Nx, the greater is the attained focal shift.

As in the case of aspherically illuminatedcircular aperture [4], nowwe can ® nd
a simple formula that accurately evaluates the amount of focal shift for moderate
values of Nx. For that purpose we expand the axial-irradiance distribution into a
Taylor series up to a second order approximation, that is

IN W20 IN 0 IN 0 W20
1
2IN 0 W 2

20 1 2
Nx

W20
16p 2

45
W 2

20, 13

where IN � and IN � denote the ® rst- andsecond-order derivative of the function
IN W20 , respectively. By taking the derivative of equation (13), and by setting it
equal to zero, we ® nd that the irradiance distribution is not symmetrical with
respect to the focal point, W20 0, but to the shifted point of axial coordinate
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W max
20

45
16p 2Nx

, 14

where the maximum axial irradiance is attained. It seems more appropriate to
express the focal shift in terms of the spatial axial coordinate, z. Hence, by
combining equations (7) and (14) we ® nd that the relative axial position of the
irradiance maximum, that is, the relative focal shift, is expressed as

zmax

fx

1

1 8p 2

45 N2
x

. 15

The minus sign in equation (15) indicates that, either in the case of a converging
fx > 0 or a diverging fx < 0 cylindrical lens, the displacement of the axial-

irradiance peak is always directed toward the lens. It is also remarkable that this
equation is of the same form as the expression corresponding to the exact relative
focal shift in a focused cylindrical Gaussian beam of Gaussian Fresnel number
N2

G 8N2
x /45 [13]. Note that although in reference [13] the case of spherical

Gaussian beams is analysed, it is easy toshow that the focal shift for spherical and
cylindrical Gaussian beams, both with the same waist, are equal.

To illustrate the accuracy of equation (15), in ® gure 4 we have represented the
value of the relative focal shift obtained with the approximated formula, and its
exact value derived fromequation (10). The examination of this ® gure reveals that
the approximated formulagives suitable results formoderate andhighvalues of Nx

(for example, when Nx 5 the error is 2.2%and for Nx 50 the error is less than
0.6%).

Finally, we would like to point out that although this analysis is equivalent to
that performed by Jiang and Stammes [19], our approach shows considerable
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Figure 3. Axial-irradiance distribution corresponding to a slit-like window from
equation (10). The on-axis behaviour is shown for three values of the Fresnel
number: Nx 100 (high), Nx 10 (moderate), Nx 4 (low).



improvements. On the one hand, the results have been generalized to the case of
diverging cylindrical waves. On the other hand, an approximated formula, which
accurately evaluates the amount of focal shift for moderate values of Nx, is
obtained [see equation (15)].

The analysis carried out above is appropriate for a great part of the practical
cases found in the laboratory, inwhich the pupil aperture is much higher along the
y-direction. Nevertheless, it seems that the assumption of in® nity extent of the
focusing element along the y-direction is quite stringent. Therefore it is necessary
to perform a more general treatment of the problem, as will be done in the next
section.

3. Th e c ase of a 2D re c tan gu lar w in dow

In order to take into account the ® nite extent of the exit pupil in the two
Cartesian directions, we assume a rectangular window function p x,y
rect x/ax rect y /ay . By substituting this pupil function into equation (3) and
by performing the changes of variable

x 2x0

ax
, x 2y0

ay
, 16

it is straightforward to ® nd that

I W20 A2N2
x T 2 1 2W20

Nx

2 1

1
exp j2p W20 z 2 dz

2

1

1
exp j2p T W20 Nx /2 x 2 dx

2

, 17

where we have introduced a new parameter, named here the truncation ratio,
de® ned as T ay /ax

2.
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Figure 4. Relative focal shift versus Fresnel number Nx evaluated by means of equation
(15) (dashed line) and by exact numerical calculations from equation (10) (solid
line).



The normalized axial-irradiance distribution may be expressed by

IN W20 c W20 w W20
2, 18

where

c W20
1

w NxT /2 2 1 2W20

Nx

2
w

W20 Nx /2
1/T

2
. 19

This relevant formula, that fully describes the axial behaviour of cylindrical lenses
for any value of Nx and any truncation ratio, indicates that the axial-irradiance
distribution is governed by the product of two di� erent factors. The ® rst factor,
w W20

2, has already been described in Section 2. Regarding the second term,
c W20 , it is an even function centred at W20 Nx /2, and describes both the
di� raction e� ects due tothe ® nite extent of the pupil along the y-direction, which
explicitly depends on the value of T , and the irradiance attenuation inherent to
wave propagation.

Now, we can give some general remarks on the axial behaviour of cylindrical
lenses byexamining its dependencewith the parameter T . For this task, we assume
a ® xedvalue of the Fresnel number of the focusing geometry, say Nx 4. First, we
investigate the case in which the truncation parameter is much higher than unity.
In this case, the function c W20 tends to c W20 1 2W20 /Nx . Therefore, the
axial behaviour is similar, of course, tothat of cylindrical ® elds nontruncated along
the y-direction, which indeed was described by equation (10).

When the value of the truncation ratio decreases, the function c W20 exhibits
a high-frequency sinusoidal-like variation modulating a dominant linear depen-
dence. In fact, the frequency of the modulation is proportional tothe value of T , as
is illustrated in ® gure 5, where we have represented the function c W20 for two
di� erent values of T . ² When the product of the twoterms, c W20 and w W20

2,
is performed, an axial-irradiance distribution is obtained in which a rapidly
varying ripple structure is dominant on the total pro® le, as is shown in ® gure 6.
Note fromthis ® gure that the central lobe has asteep-peaks structure inwhich the
position of the maximum strongly depends on the value of T .

When the truncation ratio is lower than unity, for example T 0.33, the
function c W20 has a slowly-varying behaviour so that the slope in the vicinities
of the geometrical focus is positive, inopposition tothe negative slope correspond-
ing to very high values of T . When this function is multiplied by the term
w W20

2, which is an even function with maximum value at the origin, an axial
pattern is obtained in which the irradiance peak is now moved further from the
lens, as shown in ® gure 7(b).

The appearance of this new phenomenon, which we will refer toas the inverse
focal-shift e� ect, seems to be mainly determined by the scale of c W20 and its
slope at the origin. In the next section we carry out a thorough analysis of this
e� ect in order to ® nd out when a cylindrical focusing geometry tends to su� er
inverse focal shift.
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² The calculation of the datafor most of the curves in this paper involves the evaluation
of the function erf[�]. This function is included in standard mathematical packages, for
example Matlab or Mathematica. In particular, our calculations were performed using
Mathematica.



4. Th e in v e rse foc al sh ift

The study of ® gures shown in section 3 reveals that for the appearance of an
inverse focal-shift e� ect a twofold condition must be satis® ed. On the one hand,
the frequency of the ripples structure of function c W20 must be low enough so
that less thanone ripple lies in the core regionof w W20

2. Therefore, the value of
T must be lower than unity. On the other hand, the slope of c W20 in the
vicinities of the geometrical focus, W20 0, must be positive.

The analysis of equation (19) indicates that (a) the scale of curve c W20 is
inversely proportional to T , (b) the curve is centred at W20 Nx /2, and (c)
independently of the particular values of the parameters Nx and T , the part of the
curve that is in the geometrical focus is determined by the value of the product
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(a)

(b)
Figure 5. Graphical representation of the functions w W20

2 (dashed curve) and
c W20 (solid curve) in a low-Fresnel-number system, Nx 4. The truncation
ratios are: (a) T 100, (b) T 10.



NxT . Note then that, under the constraint NxT constant, a change in the value
of Nx results inadisplacement of the c W20 curve. However, this displacement is
accompanied by a proportional change of the scale so that the same ripple of the
curve always remains in the vicinity of the focus. To illustrate this property, in
® gure 8 we have plotted the curve c W20 for three di� erent arrangements with
NxT constant.

From the above reasoning it is then apparent that an inverse focal-shift e� ect
similar to that shown in ® gure 8 can be obtained with other cylindrical focusing
geometries, provided that the product NxT remains constant. Note, however, that
under this constraint, the lower is the value of Nx, the higher is the slope of c W20
and, consequently, the higher is the amount of the resulting inverse focal shift (see
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(a)

(b)
Figure 6. Axial-irradiance distribution obtained according to equation (18) by the

product of the terms w W20
2 and c W20 . We have selected the values of the

Fresnel number and the truncation ratio from ® gure 5.



® gure 9). However, if Nx is too low, and then T too high, an axial pattern with a
rapidly varying ripples structure results again.

Aresult is then obtained that is, in acertain way, similar tothat corresponding
to a spherically illuminated circular aperture, in which the lower the Fresnel
number of the focusing set-up, the higher the magnitude of the focal shift.

Tomathematically support the above heuristic reasoning, next we calculate the
ratio, evaluated at the origin, between the ® rst derivative of c W20 corresponding
to any two di� erent arrangements characterised by Nx,1T1 Nx,2T2. The ratio is
in the form

c 1 0
c 2 0

T1

T2

Nx,2
Nx,1

. 20
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(a)

(b)
Figure 7. Graphical analysis of the cylindrical focusing set-up characterized by a

Fresnel number Nx 4 and a truncation ratio T 0.33 by representing; (a) the
functions w W20

2 and c W20 , and (b) the normalized axial-irradiance distribution
from equation (18).



This equation con® rms that, if NxT constant, the slope of c W20 at the
origin is inversely proportional to Nx. Moreover, the sign of the slope remains
unaltered.

Up tonow, we have centred our analysis on the inverse focal shift that appears
when the positive slope of the ® rst ripple of c W20 lies in the focal region.
However, it is clear that asimilar e� ect appears whenthe positive slope of afurther
ripple lies in the vicinity of the focus. To analyse this property, we have
numerically evaluated equation (19) in order to ® nd out which values of the
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Figure 8. Variation of c W20 for three di� erent arrangements imposing NxT 1.33.

Figure 9. Normalized axial pattern IN of the cylindrical focusing geometries analysed in
® gure 8.



product NxT give rise toapositive slope of c W20 in the focal point. In table 1we
have listed the values of NxT which provide a maximum or a minimum at
W20 0.

Based on the materials in this table, we may establish the following properties:
cylindrical focusing set-ups with NxT lying in an interval NxT i

max, NxT i
min ,

su� er froman inverse focal shift (see ® gure 10). Moreover, the inverse focal shift is
much higher when the value of NxT is in the centre of the interval, whereas it
vanishes when NxT is close to one of the extremes.

Another interesting e� ect takes place when the value of NxT lies in an interval
NxT i

min, NxT i 1
max , which corresponds toacase in which the slope of c W20 in

the focal region is negative. In this case the product between c W20 and w W20
2

provides an axial-irradiance distribution in which the maximum is shifted toward
the lens. Thus, it results in a conventional focal shift e� ect (see ® gure 11). It is
worthy toremarkthat alsoin this caseaslight change in the value of NxT implies a
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Figure 10. Normalized axial-irradiance distribution for three di� erent focusing
arrangements where the positive slopes for the ® rst, second and third ripple of
the function c W20 lie in the focal region.

Table 1. Values of the product NxT giving rise to a relative extreme of the function
c W20 at the origin, W20 0.

Order of the ripple NxT i
max NxT i

min

i 1 1.01 1.68
i 2 2.88 3.69
i 3 4.84 5.70
i 4 6.83 7.71
i 5 8.82 9.71

..

. ..
. ..

.

i n 1 NxT n
max 2 NxT n

min 2



change in the slope of c W20 and then a variation in the magnitude of the focal
shift.

From the above results we conclude that one can gradually modify the
magnitude of the focal shift by continuously varying the value of NxT . This
variation from apractical point of view can be implemented, e.g. by getting ® xed
Nx andvarying the widthof the windowalong the y-direction. Inthis way, one can
alternatively obtain, for example an enhanced focal shift, an attenuated focal shift
or an inverse focal shift of variable magnitude.

5. Conc lu sion s

We have derivedananalytical formulation for evaluating the on-axis di� raction
behaviour of uniform cylindrical waves truncated by arectangular window. It has
been shown that the resulting axial pattern is governed by two parameters: the
Fresnel number of the cylindrical focusing geometry, Nx, and the here de® ned
truncation ratio of the window, T . For very high values of T , it is shown that,
depending on the value of Nx, a focal-shift e� ect can appear. Moreover, an
approximated formula, which accurately evaluates the amount of focal shift for
moderate values of Nx, is obtained.

The most important outcome of this research is the achievement and sub-
sequent analysis of an inverse focal-shift e� ect. In particular, it has been found
that this phenomenon appears in principle when the value of the product NxT is
low (about 1.33). However, we have shown that this e� ect also appears for higher
values of NxT , provided that a slowly varying increasing slope of the function
c W20 lies in the focal region.

Contrary to what happens in the case of the conventional focal shift phenom-
enon, it does not seempossible toobtainasimple analytical formulatoevaluate the
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Figure 11. Axial-irradiance distribution IN corresponding to two values of NxT giving
rise to a negative slope of the function c W20 in the focal region. Both plots are
compared with that of a nontruncated cylindrical wave along the y-direction (solid
line), which results in the conventional focal shift phenomenon. We observe an
enhanced NxT 2.28 and attenuated NxT 2.80 focal-shift e� ect.



amount of inverse focal shift. This is because in this case the number of parameters
involved is much higher.

In order to ® nd the physical signi® cance of the product NxT , we can decom-
pose the axial-irradiance distribution in equation (18) into two di� erent terms.
The ® rst one, which coincides with that given in equation (10), corresponds to the
on-axis pattern of auniformcylindrical wave di� racted by an unlimited slit along
the meridian with no power and, as shown in Section 2, in this case the axial
behaviour depends on the Fresnel number Nx. The second factor,
1 2W20 /Nx w W20 Nx /2 / 1/T 2, represents the irradiance distribution
along the optical axis obtained for a uniform plane wave di� racted by a slit
aperture of height ay [34]. Moreover, in agreement with equation (8) we can
rewrite the parameter NxT as NxT ay /2 2 /¸fx. In this context, this quantity
provides the number of cylindrical Fresnel zones that will be visible from an axial
point located at a distance fx. The resulting nonmonotonic axial behaviour then
produces, for certain values of this new Fresnel number, NxT , a negative slope at
W20 0 which features the inverse focal shift.

Finally, we have shown that by simply modifying the value of NxT one can
gradually tune the magnitude of the inverse focal-shift e� ect, even to obtain a
variable focal-shift phenomenon. To illustrate our result, some numerically
evaluated examples have been presented.

We would like to conclude by emphasizing that although no experimental
results have been presented in this paper, we consider that it cannot be hard to
measure the inverse focal shift if, for example, atechnique similar tothat proposed
by Karman et al. is used [35, 36].
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