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Abstract.  We report on a general analytical procedure to analyse the axial
focusing properties of uniform cylindrical waves truncated by a rectangular
window. The resulting on-axis cfi/ffraction pattern explicitly depends on the
square of the window height-to-width ratio. Depending on the value of this

ameter, different kinds of axial behaviour are observed. In particular, it is
ound that for low values of this parameter and low Fresnel number, instead of
the expected focal-shift effect, an inverse focal-shift phenomenon can appear,
i.e. the maximum of the axial-irradiance distribution 1s displaced further away
from the window.

1. Introduction

The study of the focusing properties of spherical waves has been a subject of
increasing interest over the last few decades [1-3] Specifically, in the early 1980s it
was analytically established [4-6] and experimentally verified [7] that when a
monochromatic, uniform, converging spherical wave is diffracted by a circular
aperture, in a low-Fresnel-number geometry, the maximum of the axial irradiance
distribution is shifted toward the aperture. More recently it has been recognized
that the focal-shift effect also appears in apodized systems [8-11] and an analytical
formula has been reported for its evaluation [12]

This interesting effect has been found to appear also in other geometries, for
example in truncated or nontruncated focused beams [13-17] in spherically
aberrated focusing set-ups [18-20] and even in uniformly illuminated diffractive
optical elements [21, 22]

In spite of this extensive analysis of the focal-shift phenomenon, not too much
attention has been paid to the case of truncated cylindrical waves [19] which are of
interest in, for example, optical signal processing [23, 24] line-focusing optics to
produce a plasma sheet [25, 26] phase singularities generation in optical beams
[27] and astigmatic laser mode inverters [28, 29] where anamorphic elements are
extensively used.

In this paper, we develop an analytical formulation that fully describes the axial
behaviour of cylindrical waves truncated by a rectangular window. Depending on
the value of the here defined truncation ratio of the window, and considering a
low-Fresnel-number focusing geometry, three different types of axial behaviour
will be found. Specifically it will be shown that when the truncation in one
Cartesian direction is neglected, a focal-shift effect appears, and an approximated
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Figure 1. Schematic layout of the cylindrical focusing arrangement. The origin of the
axial coordinate is taken at the focus F of the cylindrical lens.

formula for its evaluation is presented. On the contrary, when the truncation ratio
1s low, a new effect, the inverse focal shift, can appear. For intermediate values of
the truncation ratio the axial-irradiance distribution has a steep-peaks structure in
which the position of the maximum strongly depends on this parameter.

In Section 2 we formulate the basic theory for evaluating the axial-irradiance
distribution for cylindrical waves. In Section 3 we generalize this analysis to the
case of a two-dimensional (2D) rectangular truncation by giving an analytical
formula that fully describes the corresponding axial behaviour. This formula will
allow us to find that, under certain circumstances, an inverse focal-shift effect can
appear. In Section 4 we carry out a thorough study of this new phenomenon, and
some numerically evaluated examples are shown.

2. Axial-irradiance distribution

We start by considering a uniform, monochromatic plane wave of wavelength A
tlluminating a cylindrical lens with a focal length denoted by /., as depicted in
figure 1. Since the cylindrical lens produces over the emerging field a wave-front
curvature along the x-axis, its amplitude transmittance can be expressed as

() = plx, ) exp (—Jﬁxz) 0

where k = 21t/A is the wave number, whereas the pupil function, p(x,y), gives the
window transmittance of the focusing element.
According to the Fresnel diffraction formula [30] the three-dimensional (3D)

amplitude distribution in the focal region is given by
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where 4 is a positive constant corresponding to the amplitude of the uniform
tlluminating field and z is the axial coordinate as measured from the geometrical
focus, F, of the cylindrical lens.

To obtain the amplitude distribution along the optical axis, we substitute
equation (1) into equation (2), then we set x = y = 0, giving

u() = 4 SR LLA

_]A(Z +f\) 19
.k . k
X exp _JEZ%]’.\-X% exp J(Zfo)y%] dxo dyo. (3)

In the ideal case of an unapertured cylindrical lens, p(x,y) = 1, it is easy tofind,
by using the analytical relation

J_ exp (j§12> dr = (jag'”, (4)
that the axial-irradiance distribution is given by
I1(z) = |U(z)|2=A2|f/z|. (5

Then, the maximum irradiance is located at the focus of the lens, z = 0, where a
singularity caused by the unlimited extent of the 2D pupil function appears. Also,
the dependence on the axial coordinate is inversely linear, which differs from the
well-known inverse square law associated to uniform spherical waves. Therefore,
the attenuation suffered by a cylindrical wave is weaker than that corresponding to
a spherical field.

In a more realistic case, the finite extent of the cylindrical lens must be taken
into account. Then we start by considering the case of a pupil aperture which is
much higher along the y-axis, so that the truncation suffered by the field in this
direction may be neglected. In this case we are allowed to carry out the
substitution p(x,y) = rect(x/a:), where a. denotes the extent of the slit-like
pupil window. Therefore, according to equation (3) and by using again the
relationship in equation (4), the axial-irradiance distribution can be written by

2
.k z
sz\Z+f\X%

1(z) = 42 dxo| . (6)

ay [2
Az + 1] J_ax/z b

As in conventional image formation formalism, it is convenient to express the
out-of-focus behaviour of the focusing architecture in terms of the so-called
defocus _coefficient [31] This coefficient is a small angle approximation
(a®> < f2) for the distance between the wavefront created by the cylinder lens
and a similar cylindrical wavefront with a curvature centred at the observation
point P, taken at a point on the edge of the lens aperture along an axis normal to
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Figure 2. Schematic evaluation of the defocus coefficient W20 as the optical distance,
attained at the edge of the lens window and expressed in units of the wavelength,
between the cylindrical wavefront produced by the lens, S, and that whose focus is
located at the axial point P.

the cylinder axis, and along the direction normal to the latter wavefront (see figure
2). In mathematical terms [32]

W=7 e (7)
where
_ (ax/z)z

stands for the so-called Fresnel number for the truncated, cylindrical focusing
geometry, N.. This parameter accounts for the number of cylindrical halfwave
zones covered by the lens as viewed from its focus.

Then, by performing now an appropriate change of variables,

E= 2vo/ax, 9)

and by normalizing to the value at the focus, the axial-irradiance distribution is
determined by

:m:‘ _m‘ljl . 2&42
IN( WZO) I(O) 1 Ny |20 eXp( _]275 WZOC )
= |1- 2221y () (10)

In other words, the defocus coefficient W2y is N, /2 times the ratio of the
distance from the origin to the field point over the distance from the lens to the
field point. Of course, it does not vary linearly as the field point moves away from
the lens along the optical axis.
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From equation (10) it is inferred that 7y (W20) comprises the product of two
terms. The first term describes the attenuation suffered by cylindrical waves as
they propagate. This term is given by the function [1— 2Wa/N.|, which is
centred at the axial coordinate W20 = N. /2, which corresponds, of course, to the
axial position z = 0. The second term describes the diffraction effects due to the
finite extent of the window in the x-direction, and is given by the squared modulus
of the function v (W2). This function may be analytically expressed by [33]

1= jerfl(1+ (w1
l//(W20) - 4 \/W_ZO N (11)

where erf o] is the error function, defined as

arfld === jo exp (=) dr. (12

Although ly(W2)I* is an even function, the axial-irradiance distribution given
by equation (10) is asymmetric in terms of z about the focal plane, z = 0, for two
reasons. Hirst, the defocus coefficient of equation (7) is asymmetric about the focal
point, i.e. [W(z)| # [Wan(—z)I. Despite the as tric transformation suffered
by this term, the maximum value of ly(W»)|* remains located at the origin.
Second, the linear dependence on |1 —2Wa/N«l increases the irradiance for
W < 0, and so z < 0, within the focal region, and decreases it for W2 > 0.
Therefore, the axial maximum appears shifted towards the pupil plane, resulting
in the so-called focal shift effect for cylindrical waves, as described in reference
[19]

However, W is antisymmetric about z = 0, i.e. Wa(—z) = —Wa(z), for very
small z where it is approximately given by W20 = N.z /2f.. Now, for very large N
the depth of focus given by the second term in equation (10) is small so that for the
small range of z within the focal spot, W2 is antisymmetrical. In this case, the
term |1 — 2W2 /Nl tends to unity, so that the irradiance pattern is symmetric
about the geometrical focus, and the maximum irradiance is located at the origin.
As soon as the Fresnel number decreases the depth of focus is very large so that the
asymmetry in W2 yields the axial-irradiance distribution asymmetric, and the
asymmetry in the linear term shifts the peak of the focal spot towards the lens.

To illustrate this effect, we have depicted in figure 3 the normalized axial-
irradiance distribution for difference values of N.. It is apparent from this figure
that the lower is the value of N., the greater is the attained focal shift.

As in the case of a spherically illuminated circular aperture [4] now we can find
a simple formula that accurately evaluates the amount of focal shift for moderate
values of N.. For that purpose we expand the axial-irradiance distribution into a
Taylor series up to a second order approximation, that is

2
In(Wa0) ~ Iy (0) + 1,(0) Wy + 4120 W3y = 1 — l W — % wa,  (13)

where I (o) and I,y (e) denote the first- and second-order derivative of the function
In(W), respectively. By taking the derivative of equation (13), and by setting it
equal to zero, we find that the irradiance distribution is not symmetrical with
respect to the focal point, W20 = 0, but to the shifted point of axial coordinate
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Figure 3. Axial-irradiance distribution corresponding to a slit-like window from

equation (10). The on-axis behaviour is shown for three values of the Fresnel
number: N, = 100 (high), N = 10 (moderate), N = 4 (low).

45
16m2N >

wh™ = (14)
where the maximum axial irradiance is attained. It seems more appropriate to
express the focal shift in terms of the spatial axial coordinate, z. Hence, by
combining equations (7) and (14) we find that the relative axial position of the
irradiance maximum, that is, the relative focal shift, is expressed as

Zmax 1
=- ) (15)
Jx 8TC2 2
EPTRE

The minus sign in equation (15? indicates that, either in the case of a converging
(f+>0) or a diverging (1« < 0) cylindrical lens, the displacement of the axial-
irradiance peak is always directed toward the lens. It is also remarkable that this
equation is of the same form as the expression corresponding to the exact relative
focal shift in a focused cylindrical Gaussian beam of Gaussian Fresnel number
N& = 8N2/45 [13] Note that although in reference [13] the case of spherical
Gaussian beams is analysed, it is easy to show that the focal shift for spherical and
cylindrical Gaussian beams, both with the same waist, are equal.

Toillustrate the accuracy of equation (15), in figure 4 we have represented the
value of the relative focal shift obtained with the approximated formula, and its
exact value derived from equation (10). The examination of this figure reveals that
the approximated formula gives suitable results for moderate and high values of N«
(for /e;xample, when N. = 5 the error is 2.2%and for N.. = 50 the error is less than
0.6%9.

Finally, we would like to point out that although this analysis is equivalent to
that performed by Jiang and Stammes [19] our approach shows considerable
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Figure 4.  Relative focal shift versus Fresnel number N, evaluated by means of equation
flS)) (dashed line) and by exact numerical calculations from equation (10) (solid
ine).

improvements. On the one hand, the results have been generalized to the case of
diverging cylindrical waves. On the other hand, an approximated formula, which
accurately evaluates the amount of focal shift for moderate values of M., is
obtained [see equation (15)]

The analysis carried out above is appropriate for a great part of the practical
cases found in the laboratory, in which the pupil aperture is much higher along the
y-direction. Nevertheless, it seems that the assumption of infinity extent of the
focusing element along the y-direction is quite stringent. Therefore it is necessary
to perform a more general treatment of the problem, as will be done in the next
section.

3. The case of a 2D rectangular window

In order to take into account the finite extent of the exit pupil in the two
Cartesian directions, we assume a rectangular window function p(x,y) =
rect (x/a.) rect (y /a,). By substituting this pupil function into equation (33 and

by performing the changes of variable

_20 . _ 2w
&= 6 2 ° (16)
it is straightforward to find that
2041 2
1(W) = A*N2T? (1 - %) U_l exp (—j2nwn2) d@‘
1 2
||, expl-ianrns - .22 (17

where we have introdélced a new parameter, named here the truncation ratio,
defined as T = (a, Ja.)".
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The normalized axial-irradiance distribution may be expressed by

In(Wa) = (W) ly (W), (18)
where
_ 1 2w\ (W= N2\
X W) |l//(_NxT/2)|2(l N) ‘l/'( 1T )‘ (19)

This relevant formula, that fully describes the axial behaviour of cylindrical lenses
for any value of N. and any truncation ratio, indicates that the axial-irradiance
distribution is governed by the product of two different factors. The first factor,
ly(Wa) P, has already been described in Section 2. Regarding the second term,
(W), it is an even function centred at W2 = N, /2, and describes both the
diffraction effects due to the finite extent of the pupil along the y-direction, which
explicitly depends on the value of T, and the irradiance attenuation inherent to
wave propagation.

Now, we can give some general remarks on the axial behaviour of cylindrical
lenses by examining its dependence with the parameter 7'. For this task, we assume
afixed value of the Fresnel number of the focusing geometry, say N« = 4. First, we
investigate the case in which the truncation parameter is much higher than unity.
In this case, the function y(W20) tends toy(Wa0) = |1 — 2Wa /N.l. Therefore, the
axial behaviour is similar, of course, to that of cylindrical fields nontruncated along
the y-direction, which indeed was described by equation (10).

When the value of the truncation ratio decreases, the function (#20) exhibits
a high-frequency sinusoidal-like variation modulating a dominant linear depen-
dence. In fact, the frequency of the modulation is proportional to the value of T, as
is illustrated in figure 5, where we have represented the function y(#20) for two
different values of 7. When the product of the two terms, y(W20) and |y (Wa)I%,
1s performed, an axial-irradiance distribution is obtained in which a rapidly
varying ripple structure is dominant on the total profile, as is shown in figure 6.
Note from this figure that the central lobe has a steep-peaks structure in which the
position of the maximum strongly depends on the value of T.

When the truncation ratio is lower than unity, for example T = 0.33, the
function y(#72) has a slowly-varying behaviour so that the slope in the vicinities
of the geometrical focus is positive, in opposition to the negative slope correspond-
ing to very high values of 7. When this function is multiplied by the term
ly(Wa)|%, Which is an even function with maximum value at the origin, an axial
pattern is obtained in which the irradiance peak is now moved further from the
lens, as shown in figure 7(b).

The appearance of this new phenomenon, which we will refer to as the inverse
focal-shift effect, seems to be mainly determined by the scale of %(W2) and its
slope at the origin. In the next section we carry out a thorough analysis of this
effect in order to find out when a cylindrical focusing geometry tends to suffer
inverse focal shift.

T The calculation of the data for most of the curves in this paper involves the evaluation
of the function erf[e] This function is included in standard mathematical 11p:ack.aﬁes, for
exanlllple Matlab or Mathematica. In particular, our calculations were performed using
Mathematica.
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Figure 5.  Graphical representation of the functions |y(Wx)I* (dashed curve) and

(W) (solid curve) in a low-Fresnel-number system, N.=4. The truncation
ratios are: (a) T =100, (b) T = 10.

4. The inverse focal shift

The study of figures shown in section 3 reveals that for the appearance of an
mverse focal-shift effect a twofold condition must be satisfied. On the one hand,
the frequency of the ripples structure of function y(#20) must be low enough so
that less than one ripple lies in the core region of ly(W20)|%. Therefore, the value of
T must be lower than unity. On the other hand, the slope of %(W2) in the
vicinities of the geometrical focus, W20 = 0, must be positive.

The analysis of equation (19) indicates that (a) the scale of curve (W) is
inversely proportional to 7, (b) the curve is centred at W = N./2, and (c)
independently of the particular values of the parameters N. and T, the part of the
curve that is in the geometrical focus is determined by the value of the product



138 C. J. Zapata- Rodriguez et al.

1.00 4

0.75 —

0.50 —

0.25 —

NORMALISED AXIAL IRRADIANCE: |

0.00 T T T T T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
DEFOCUS COEFFICIENT: W,

(a)

1.25 —

1.00 —

0.75 —

0.50 —

0.25 —

NORMALISED AXIAL IRRADIANCE: I

0.00 — T 1 T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
DEFOCUS COEFFICIENT: W,

(b)
Figure 6.  Axial-irradiance distribuztion obtained according to equation (18) by the
product of the terms [v(W)l~ and x(W2). We have selected the values of the
Fresnel number and the truncation ratio from figure 5.

N.T. Note then that, under the constraint N7 = constant, a change in the value
of N, results in a displacement of the x(#20) curve. However, this displacement is
accompanied by a proportional change of the scale so that the same ripple of the
curve always remains in the vicinity of the focus. To illustrate this property, in
figure 8 we have plotted the curve y(W20) for three different arrangements with
NxT = constant.

From the above reasoning it is then apparent that an inverse focal-shift effect
similar to that shown in figure 8 can be obtained with other cylindrical focusing
geometries, provided that the product V. T remains constant. Note, however, that
under this constraint, the lower is the value of N, the higher is the slope of y(#20)
and, consequently, the higher is the amount of the resulting inverse focal shift (see
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Figure 7. Graphical analysis of the cylindrical focusing set-up characterized by a
Fresnel number Ny = 4 and a truncation ratio T = 0.33 by representing (a) the
functions lv(W20)|” and (W), and (b) the normalized axial-irradiance distribution
from equation (18).

figure 9). However, if N. is too low, and then T too high, an axial pattern with a
rapidly varying ripples structure results again.

A result is then obtained that is, in a certain way, similar to that corresponding
to a spherically illuminated circular aperture, in which the lower the Fresnel
number of the focusing set-up, the higher the magnitude of the focal shift.

To mathematically support the above heuristic reasoning, next we calculate the
ratio, evaluated at the origin, between the first derivative of (W20) corresponding
to any two different arrangements characterised by N.1T1 = N2 T2. The ratio is
in the form

w0 _T1_Neop (20
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Figure 8.  Variation of %(W2) for three different arrangements imposing N7 = 1.33.
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Figure 9. Normalized axial pattern 7 f(i)f the gylindn'cal focusing geometries analysed in
gure 8.

This equation confirms that, if N.T = constant, the slope of x(#20) at the
origin is inversely proportional to N.. Moreover, the sign of the slope remains
unaltered.

Up to now, we have centred our analysis on the inverse focal shift that appears
when the positive slope of the first ripple of (W) lies in the focal region.
However, it is clear that a similar effect appears when the positive slope of a further
ripple lies in the vicinity of the focus. To analyse this property, we have
numerically evaluated equation (19) in order to find out which values of the
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Figure 10. Normalized axial-irradiance distribution for three different focusin
arrangements where the positive slopes for the first, second and third ripple of
the function (W20) lie in the focal region.

Table 1. Values of the product N +T giving rise to a relanve extreme of the function
X Wh) at t e origin, W =0
Oxder of the ripple (N T)i (NxT)hvin
i=1 1.01 1.68
i=2 2.88 3.69
i=3 4.84 5.70
i=4 6.83 7.71
i=5 8.82 971
i=n+1 (N Ty + 2 (N T +2

product N. T give rise to a positive slope of y(W29) in the focal point. In table 1 we
have listed the values of N.T which provide a maximum or a minimum at
W = 0.

Based on the materials in this table, we may establish the following properties:
cylindrical focusing set-ups with N7 lying in an interval (N T)ina, (Nx T,
suffer from an inverse focal shift (see figure 10). Moreover, the inverse focal shift is
much higher when the value of N.T is in the centre of the interval, whereas it
vanishes when N, T is close to one of the extremes.

Another interesting effect takes place when the value of N. T lies in an 1nterval
[N ) iyiny (N T); i+, which corresponds to a case in which the slope of (W2) 1n
the focal region is negative. In this case the product between y( Wzool))e dly(wa)l?
provides an axial-irradiance distribution in which the maximum is shifted toward
the lens. Thus, it results in a conventional focal shift effect (see figure 11). It is
worthy to remark that also in this case a slight change in the value of V.. T implies a
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Figure 11.  Axial-irradiance distribution / oorrespondmg to two values of N.T giving
rise to a negative slope of the function )i( W) in the focal region. Both plots are
compared with that of a nontruncated cylindrical wave along the y-direction (solid
line), which results in the oonventlonaf, focal shift phenomenon. We observe an
enhanced (N, T = 2.28) and attenuated (N.T = 2.80) focal-shift effect.

change in the slope of ¥(#20) and then a variation in the magnitude of the focal
shift.

From the above results we conclude that one can gradually modify the
magnitude of the focal shift by continuously varying the value of N.7. This
variation from a practical point of view can be implemented, e.g. by getting fixed
N, and varying the width of the window along the y-direction. In this way, one can
alternatively obtain, for example an enhanced focal shift, an attenuated focal shift
or an inverse focal shift of variable magnitude.

5. Conclusions

We have derived an analytical formulation for evaluating the on-axis diffraction
behaviour of uniform cylindrical waves truncated by a rectangular window. It has
been shown that the resulting axial pattern is governed by two parameters: the
Fresnel number of the cylindrical focusing geometry, N., and the here defined
truncation ratio of the window, T. For very high values of 7, it is shown that,
depending on the value of N., a focal-shift effect can appear. Moreover, an
approximated formula, which accurately evaluates the amount of focal shift for
moderate values of N, is obtained.

The most important outcome of this research is the achievement and sub-
sequent analysis of an inverse focal-shift effect. In particular, it has been found
that this phenomenon appears in principle when the value of the product N.T is
low (about 1.33). However, we have shown that this effect also appears for higher
values of N.T, provided that a slowly varying increasing slope of the function
x(W) lies in the focal region.

Contrary to what happens in the case of the conventional focal shift phenom-
enon, it does not seem possible to obtain a simple analytical formula to evaluate the
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amount of inverse focal shift. This is because in this case the number of parameters
involved is much higher.

In order to find the physical significance of the product N.T, we can decom-
pose the axial-irradiance distribution in equation (18) into two different terms.
The first one, which coincides with that given in equation (10), corresponds to the
on-axis pattern of a uniform cylindrical wave diffracted by an unlimited slit along
the meridian with no power and, as shown in Section 2, in this case the axial
behaviour depends on the Fresnel number N,. The second factor,
11— 2w /N2 — N /2) J(1/T)II?, represents the irradiance distribution
along the optical axis obtained for a uniform plane wave diffracted by a slit
aperture of height a, [34] Moreover, in agreement with equation (8) we can
rewrite the parameter N.«T as N.T = (ay /2)”/Af.. In this context, this quantity
provides the number of cylindrical Fresnel zones that will be visible from an axial
point located at a distance fv. The resulting nonmonotonic axial behaviour then
produces, for certain values of this new Fresnel number, N. T, a negative slope at
W = 0 which features the inverse focal shift.

Finally, we have shown that by simply modifying the value of N.T one can
gradually tune the magnitude of the inverse focal-shift effect, even to obtain a
variable focal-shift phenomenon. To illustrate our result, some numerically
evaluated examples have been presented.

We would like to conclude by emphasizing that although no experimental
results have been presented in this paper, we consider that it cannot be hard to
measure the inverse focal shift if, for example, a technique similar to that proposed
by Karman ez al. is used [35, 36}
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