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Abstract

We present an analytical formula for the evaluation of the axial-irradiance distribution of general Bessel beams apodized
by a radially-nonsymmetric window. Our approach is based on the similarity between the axial behavior of such beams and
the propagation properties of a properly modified version of the window transmittance. To illustrate our formalism, we
analyze the axial behavior of some complex beams. q 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

ŽThe concept of nondiffracting beams also called
.Bessel beams was introduced by Durnin and co-

w xworkers 1,2 . The main feature of these beams is
that they undergo absolutely nondiffracting spread-
ing, but their transverse intensity is highly localized.
Such waves are exact solutions of the Helmholtz
equation. However, since these exact solutions of the
wave equation are not square integrable, the non-
diffracting beams carry an infinite power, therefore
they are not physically realizable.

In the last few years many research efforts have
been addressed to the experimental realization of

) Corresponding author. E-mail: manuel.martinez@uv.es

beams whose behavior approximates that of ideal
Bessel beams in an extended propagation range. In
this sense, it is remarkable that Bessel beams have

w xbeen produced by the use of a narrow annular slit 2 ,
w xby holographic optical elements 3,4 , by the use of

w xFabry–Perot resonators 5 , or even by refracting
w xsystems designed for beam transformation 6 .

Since the introduction of nondiffracting beams, a
number of publications have been devoted to the

w xanalysis of their propagation properties 7–10 . How-
ever, since a realistic realization includes the pres-
ence of a windowing profile, an analytical descrip-
tion of their propagation features is not trivial, and
therefore the wavefield generally has to be numeri-

w xcally evaluated 11,12 . It is noticeable that the above
studies have dealt with radially-symmetric window
profiles applied to the simplest member of the family
of nondiffracting beams, i.e., to that whose trans-
verse amplitude is described by the zero-order Bessel
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function of the first kind. Therefore, a thorough
analysis of the propagation of a nondiffracting beam

Žin its general form which will be referred to in this
.paper as a general Bessel beam under radially-non-

symmetric windowing has not been performed to
date.

The goal of this paper is to report on an analytical
formulation to evaluate the axial-irradiance distribu-
tion corresponding to a general Bessel beam apo-
dized 1 by a rotationally-nonsymmetric window. The
formula, which is a generalization of that reported by

w xBorghi et al. 14 , is based on the similarity between
the axial-irradiance distribution of the apertured
Bessel beam and the irradiance distribution, along a
certain straight line, of a modified version of the
window transmittance. Our formulation will allow us
not only to revisit the analysis of well-known Bessel
beams, but also to tackle, in a quite simple way, the
study of the propagation features of more complex
beams, which have not been previously reported.

Describing our approach, in Section 2 we formu-
late the basic theory for evaluating the axial-irradi-
ance distribution corresponding to radially-nonsym-
metric apodized general Bessel beams. In Section 3
we apply our formulation to revisit the study of the
propagation properties of the well-known class of

Ž .Bessel–Gauss BG beams. To exploit the power of
our formalism, in Section 4 we perform the analysis
of a more general situation in which we deal with a
general Bessel beam windowed by a radially-non-
symmetric function.

2. Basic theory

To analyze the axial behavior of an apodized
general Bessel beam, we start by considering that in
a reference plane, transverse to the propagation di-

1 The term apodization etymologically comes from the Greek
Ž .to remove foot , and involves the suppression, or at least a
considerable decrease, of the sidelobes of the diffraction pattern.
However, during the last decades the use of this term has been
extended, and now the use of the word apodization is generally
accepted to denote any modification of the uniform amplitude

Ž w x.distribution of the pupil see Ref. 13 .

rection of the beam, the amplitude distribution can
be expressed as the product

Õ r ,u s t r ,u B r ,u , 1Ž . Ž . Ž . Ž .
r and u being polar coordinates over the reference
plane, taking its axial point as origin. In this equation
the function

q`

mB r ,u s i B J br exp imu 2Ž . Ž . Ž . Ž .Ý m m
msy`

represents the amplitude distribution associated with
w xa Bessel beam in its general form 3 . This beam

consists of a proper superposition of elementary
Bessel beams, J br exp imu , all with the sameŽ . Ž .m

scale factor 1rb. The phase factor exp imu givesŽ .
rise to a spiral wave front, rotating upon propagation.

Ž .Let us recall that the coefficients B in Eq. 2m

correspond to the coefficients of the circular har-
monic expansion for the spatial-frequency spectrum
of the general Bessel beam. Since this spectrum is
confined into a thin annulus of radius hsbr2p

w x15 , the values B simply correspond to the Fourierm

expansion coefficients of the angular variation of the
spatial-frequency spectrum, A f , within this annu-Ž .
lus. In this way, a nondiffracting beam can be also
understood as the result of the superposition of plane
waves whose wave-vectors describe a cone of semia-
perture a such that sinasbrk, and whose relative
amplitude is given by the function A f .Ž .

Ž .Note that Eq. 1 may describe two different
Ž .diffracting geometries: a the case of a diffracting

screen, of amplitude transmittance t r ,u , normallyŽ .
Ž .illuminated by a general Bessel beam; and b the

situation corresponding to an optical beam, whose
amplitude distribution at the reference plane is
t r ,u , that illuminates an holographic plate de-Ž .

w xsigned to produce a Bessel beam 3,4 .
To evaluate the axial-amplitude distribution of the

apodized general Bessel beam we assume that the
propagation is in the paraxial regime, and then we
particularize the Fresnel–Kirchhoff diffraction for-

w xmula for the axial points 16 , i.e.

`exp ikzŽ . 2p

h z f t r ,u B r ,uŽ . Ž . Ž .H H
i l z 0 0

=
k

2exp i r r d r du , 3Ž .ž /2 z
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where z is the axial distance from the reference
Ž . Ž .plane. By substituting now Eq. 2 into Eq. 3 , we

obtain

q` `k exp ikzŽ .
mh z s i B t r J brŽ . Ž . Ž .Ý H m ym mi z 0msy`

=
k

2exp i r r d r , 4Ž .ž /2 z

where the function t r represents the radial partŽ .m

of the mth-order circular harmonic of the function
t r ,u , that isŽ .

1 2p

t r s t r ,u exp yimu du . 5Ž . Ž . Ž . Ž .Hm 2p 0

Finally, if we take into account that J -ym
m Ž .x s y1 J x , Eq. 4 can be rewritten asŽ . Ž . Ž .m

q` `k exp ikzŽ .
mh z s i B t rŽ . Ž .Ý H ym mi z 0msy`

=
k

2J br exp i r r d r . 6Ž . Ž .m ž /2 z

We have, then, obtained an analytical formula
that describes the axial behavior of nondiffracting
beams, in their general form, apodized by a diffract-
ing window, with or without radial symmetry. From
this formula it is apparent that the axial amplitude
distribution is governed by the products B t r ,Ž .ym m

i.e., by the coefficients of the expansions into circu-
lar harmonics of both the Bessel-beam spectrum and

Ž .the apodizing function t r ,u . Moreover, Eq. 6Ž .
also permits us to state that zero-axial irradiance is
achieved if the apodization is such that all the prod-
ucts B t r are equal to zero. Note that this is aŽ .ym m

generalization of the condition for obtaining zero-
axial irradiance when a pupil filter is uniformly

w xilluminated 17 , and it may be particularly suitable
for precision alignment applications.

Let us now consider a, in principle, different
situation in which the amplitude distribution at the
reference plane is p r ,u . This situation may corre-Ž .

Ž .spond to: a a monochromatic plane wave that
normally illuminates a diffracting screen whose am-

Ž .plitude transmittance is p r ,u ; and b an opticalŽ .
beam whose amplitude distribution at zs0 is
p r ,u .Ž .

If we apply again the Fresnel–Kirchhoff diffrac-
tion formula, we find that the transverse field ampli-
tude distribution at a distance z from the reference
plane can be expressed as

`exp ikz kŽ .
2u r ,w , z s exp i r P r ,w ;r , zŽ . Ž .Hž /i l z 2 z 0

=
k

2exp i r r d r , 7Ž .ž /2 z

where r and w are polar coordinates over the plane
of interest, taking its axial point as origin, and the
function P r ,w ;r , z is given byŽ .
P r ,w ;r , zŽ .

2p2p

s p r ,u exp yi rrcos uyw du .Ž . Ž .H
l z0

8Ž .

This function can be expressed in terms of a series of
Bessel functions as 2

q` 2p rrm
P r ,w ;r , z s2p yi JŽ . Ž .Ý m ž /l zmsy`

=exp imw p r , 9Ž . Ž . Ž .m

where p r represents the radial part of the mth-Ž .m

order circular harmonic of p r ,u .Ž .
Ž . Ž .By substituting Eq. 9 into Eq. 7 we find that

2kexp ik zqr r2 zŽ .
u r ,w , z sŽ .

i z

=
q` `m

yi exp imw p rŽ . Ž . Ž .Ý H m
0msy`

=
2p rr k

2J exp i r r d r .m ž / ž /l z 2 z
10Ž .

Ž . Ž .Comparing now Eqs. 6 and 10 we find that the
following relation holds

2
b2

h z s u rs z , wsp , z , 11Ž . Ž .ž /k

2 Hint: exp yi Acos B sÝ` yi mJ A exp imB ; seeŽ . Ž . Ž . Ž .ms y` m
w xfor example Ref. 18 .
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provided that the circular-harmonic expansion of the
pupil function p r ,u is in the formŽ .

`

p r ,u s p r exp imuŽ . Ž . Ž .Ý m
msy`

`

s B t r exp imu . 12Ž . Ž . Ž .Ý ym m
msy`

The above equations indicate that the axial-irradi-
ance distribution of a general Bessel beam apertured
by a window with or without radial symmetry is the
same as that produced, under plane-wave illumina-

Ž .tion, by the window function of Eq. 12 along the
straight line defined by rsb zrkszsina , wsp.

On the basis of this general result, many particu-
lar results can be obtained. In this sense, it is
straightforward to find from our approach that the
axial irradiance associated with an apertured J brŽ .0

beam, is the same as that produced by the zero-order
Žcircular harmonic of the aperture transmittance un-

.der plane-wave illumination along the line rs
w xzsina , as reported by Borghi et al. 14 .

We center now our attention into the case in
which at zs0 the amplitude distribution is in the
form

Õ r ,u s t r ,u J br exp imu , 13Ž . Ž . Ž . Ž . Ž .m

that is, into the case of an apertured elementary
Bessel beam of order m. Since in this case the
coefficients B sd we find that the correspond-n n,m

ing axial-irradiance distribution is the same as that
produced, along the above mentioned straight line,
by a radially-nonsymmetric pupil filter p r ,uŽ .
whose circular-harmonic decomposition only con-
tains the term of order ym of the apodizing pupil
t r ,u .Ž .

From that result it can be stated, as a general
proposition, that the circular-harmonic decomposi-
tion of the function p r ,u is governed by the formŽ .
of the general Bessel beam. In other words, the
general Bessel beam selects the circular harmonics
that are present in the function p r ,u , and theirŽ .
relative weight.

Our approach allows us also to perform a thor-
ough analysis of other quite interesting situations.
This is the case of the axial behavior of the well-know

w xBG beams 19 , or the more general case in which a
radially-nonsymmetric laser mode illuminates a plate
designed to produce a Bessel beam.

3. The Bessel–Gauss beam

Let us consider the case of the BG beams. In this
case, the amplitude distribution at zs0 is given by

r 2

Õ r ,u sJ br exp y , 14Ž . Ž . Ž .0 2ž /w0

where w represents the waist of the Gaussian beam.0

As stated in the previous section, since we deal
with the elementary zero-order Bessel beam, to cal-
culate the axial-irradiance distribution we simply
need to evaluate the propagation properties of a,
radially symmetric, Gaussian beam whose amplitude
distribution at zs0 is in the form

r 2

p r sexp y . 15Ž . Ž .2ž /w0

Recalling the propagation characteristics of a Gauss-
w xian beam 20 , it is easy to give an analytical expres-

sion for the irradiance distribution at any plane trans-
verse to the propagation direction. The expression is

w2 r 2
0

I r , z s exp y2 , 16Ž . Ž .2 2ž /w z w zŽ . Ž .
where the parameter

2z
w z sw 1q 17Ž . Ž .)0 ž /zR

represents the variation of the width of the beam
when propagation, z spw2rl being the so-calledR 0

Rayleigh range for the Gaussian beam.
If we now evaluate the irradiance distribution

along the straight line rszsina , we find that

I z ' I rsa z , zŽ . Ž .a

2 2z a
2 ž /ž /1 z qRs exp y ,2 2z z

1q 1qž / ž /z zR R

18Ž .

where the parameter qslrpw represents the an-0
Ž .gular divergence of the Gaussian beam. In Eq. 18

we assume that a is small, since the propagation is
in the paraxial regime, and therefore zsina,za .
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Taking into account now the similarity between
the axial irradiance of the BG beam and the irradi-
ance distribution of the sole Gaussian beam along

Ž .the straight line rsza , it is clear that Eq. 18 also
represents the on-axis irradiance distribution for the

Ž .BG beam represented by Eq. 14 . Let us emphasize
Ž . Ž .that Eq. 18 reproduces the result reported in Eq. 5
w xof Ref. 9 , where the propagation characteristics of

BG beams are analyzed.
In order to perform a rigorous analysis of the

axial behavior of BG beams, we make now the
following geometrical mapping

z
zs , II z s I z . 19Ž . Ž . Ž .a azR

Ž .Then, Eq. 18 can be rewritten as

21 2z C aŽ .
II z s exp y , 20Ž . Ž .a 22 1qz1qz

where the ratio

2a
C a s 21Ž . Ž .ž /q

is a real and positive parameter that relates the scale
of the Bessel beam with the Gaussian-beam angular
divergence.

Note that, as it is shown in Fig. 1, II z is aŽ .a

monotonically-decreasing function for values z)0,
with maximum value at the origin. This value corre-
sponds to the irradiance at the axial point of the
waist plane of the Gaussian beam, which due to the
normalization taken in our study is II 0 s1. TheŽ .a

slope of II z depends on the value of the parame-Ž .a

ter C a in such a way that the higher the value ofŽ .
C a is the narrower the function II z is.Ž . Ž .a

Since we are interested in finding out which value
of the ratio arq provides the more slowly-varying
axial-irradiance distribution for the BG beam, next
we investigate the relation between the value of z ,
say z , corresponding to the half-maximum value ofH

II z , and the ratio parameter C a . From Eq.Ž . Ž .a

Ž .20 it is straightforward to find that such a relation
is given by the transcendental equation

1qz 2 1qz 2
H H

C a sy ln . 22Ž . Ž .2 ž /22zH

Fig. 1. Normalized axial-irradiance distribution for Bessel–Gauss
Ž .beams with different values of the ratio parameter C a , as a

function of the normalized axial coordinate z s zr z .R

For a given value of the ratio parameter C a , theŽ .
root of this equation is the abscissa of the point of
intersection of the curve

1qz 2 1qz 2

ysy ln 23Ž .2 ž /22z

and the straight line ysC a . A plot of theseŽ .
Ž .functions see solid lines in Fig. 2 shows that the

Ž .highest value for z z s1 is obtained whenH H

C a s0, that is, when as0. Note that this is justŽ .
the case of a Gaussian beam illuminated by an
on-axis plane wave. In this case, of course, the
half-maximum irradiance is attained at zsz . OnR

the other hand, as the value of the parameter C aŽ .
increases the value of z continuously decreases. ToH

analyze this effect, let us consider that the value of
Žw and then the angular divergence of the Gaussian0
.beam remains constant. Then, a continuous increase

Žin the value of the parameter a which implies a
proportional narrowness of the core of the Bessel

.beam gives rise to a gradual diminution of the value
of the half-maximum coordinate z . Thus, if we areH

interested in obtaining a slow variation for the axial-
irradiance pattern, it is necessary that the scale of the
Bessel beam core be as high as possible, compared
with the Gauss-beam waist.
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Fig. 2. Plot of the functions used to graphically solve the transcen-
Ž . Ž .dent equations given in Eqs. 22 and 24 .

It should be noted that a similar study, for the
propagation features of BG beams, was already per-

w xformed in reference 19 . In that paper, it was estab-
lished, on the basis of parageometric reasoning, that
the half-maximum value for the axial-irradiance dis-

'(tribution is attained at a distance z s ln 2 w raŽ .H 0

from the reference plane. Taking into account the
notation employed in our paper, this relation can be
rewritten as

'ln 2Ž .
C a s , 24Ž . Ž .

X 2zH

where z
X sz rz . As it is shown in Fig. 2, whereH H R

2'the function ys ln 2 rz is plotted with a dashedŽ .
line, this result overestimates, for any value of C a ,Ž .
the width of the axial-irradiance pattern. This is
because, as the authors pointed out, the parageomet-
ric study did not consider the influence of two
factors: the angular spread of the Gaussian beam,
and the attenuation suffered by its amplitude when
propagating, which is proportional to the factor

Ž .1rw z .

4. Application to radially-nonsymmetric beams

In Section 3 we have used our approach to revisit
the quite simple case in which the simplest elemen-

tary Bessel beam is windowed by the fundamental,
or lowest-order, mode of a stable laser resonator.
Since both beams are radially symmetric, it is clear
that in this study we have not exploited all the power
of our approach. Therefore, in this section we will
tackle the analysis of a more general situation in
which we deal with a higher-order, radially-nonsym-
metric laser mode and with a general Bessel beam.

Let us consider that, for example, the window is
given by the Hermite–Gauss function of 1,1 order,Ž .
that is

x y
t x , y sHH ,Ž . 1,1 ž /w w0 0

2 2 ' 'x qy 2 x 2 y
sexp y H H ,1 12ž / ž / ž /w ww 0 00

25Ž .

where H v represents the first-order HermiteŽ .1

polynomial, and w stands for the beam waist. A0

gray-scale representation of t x , y is given in Fig.Ž .
3. To perform our analysis it is convenient to express
this function, in polar coordinates, in terms of a

Fig. 3. Gray-scale representation of the modulus of the transmit-
Ž . Ž . Ž .tance indicated in Eq. 25 , for values x, y g y2w ,2w =0 0

Ž .y2w ,2w .0 0
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linear combination of Laguerre–Gauss functions, de-
fined as

r
LL ,up , l ž /w0

l2 2'r 2 r 2 r
l ilusexp y L e , 26Ž .p2 2ž / ž /ž /ww w00 0

lwhere L v are the associated Laguerre polyno-Ž .p

mial of orders p and l . In this way, we obtain

r r
t r ,u syi LL ,u yLL ,u .Ž . 0,2 0,y2ž / ž /w w0 0

27Ž .

Ž .Since Eq. 27 provides, indeed, the circular-
harmonic decomposition of t r ,u , to obtain theŽ .

Ž .axial behavior of the Bessel Hermite–Gauss BHG
beam under study we simply need to analyze the

Žpropagation properties of the next sole beam see Eq.
Ž ..12

p r ,uŽ .

r r
syi B LL ,u yB LL ,u ,y2 0,2 2 0,y2ž / ž /w w0 0

28Ž .

where B are coefficients of the general Bessel-" 2

beam expression.
Now, using the well-known propagation proper-

w xties of the Laguerre–Gauss functions 20 , it is easy
to find that the three-dimensional irradiance distribu-
tion of this beam is

2w r02
u r ,w , z s B LL ,wŽ . y2 0,22 ž /w zw z Ž .Ž .

2r
yB LL ,w , 29Ž .2 0,y2 ž /w zŽ .

where the function w z is the same as that definedŽ .
Ž .in Eq. 17 .

Ž .Finally, by particularizing Eq. 29 to the points
belonging to the straight line rsa z, wsp, and by
performing the geometrical mapping described in Eq.

Fig. 4. Normalized axial-irradiance distribution for Bessel Her-
Ž .mite–Gauss beams of 1,1 order with different values of the ratio

Ž .parameter C a , as a function of the normalized axial coordinate
z s zr z .R

Ž .19 , we find that the axial-irradiance distribution
provided by the BHG beam is given by

C 2 aŽ .2 4II z s4 B yB zŽ .a y2 2 321qzŽ .

=
z 2 C aŽ .

exp y2 . 30Ž .2ž /1qz

Ž .From the analysis of Eq. 30 we can obtain some
conclusions on the propagation properties of that
beam. First, we note that among all the components
of the general Bessel beam, only those of order "2
contribute to the axial-irradiance distribution of the
BHG beam. It is remarkable that the values of such
coefficients do not govern the axial-irradiance pat-
tern profile, but they only provide a weight factor.
Second, it is now apparent that zero-irradiance is
obtained along the optical axis if, and only if, the
Bessel beam is such that B sB , independentlyy2 2

from the value of the rest of the coefficients. There-
fore, it can be established that to obtain zero-axial
irradiance, it is sufficient for A f to be an evenŽ .
function.

To add more remarks on the propagation features
of the beam we deal with, we also perform a graphi-
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2
cal representation of II z r B yB in Fig. 4.Ž .a y2 2

From this figure it is clear that the lower the value of
Žthe parameter C a i.e., the higher the width of theŽ .

beam core, compared with the Hermite–Gauss beam
.divergence, is , the smoother the variation of the

axial irradiance. Therefore, the best performance of
the beam is obtained, in this sense, when a<q .
Note, however, that in this case the BHG beam
behaves, basically, as an ordinary Hermite–Gauss
beam.

The analysis of curves in Fig. 4 reveals the pres-
ence of a quite interesting, highly surprising, and, to
the best of our knowledge, novel focusing effect.
Note that as the value of the ratio parameter, C a ,Ž .

Žincreases which implies a departure from the, in
.principle, ideal axial behavior of the BHG beam ,

there appears an increasingly sharp axial-irradiance
peak. The normalized axial coordinate for this maxi-
mum is given by

2((z s 1r2yC a q 1r2yC a q2 .Ž . Ž .Ž . Ž .max

31Ž .

From this equation, it is straightforward to find that
Ž .the higher the value of C a is, the closer from the

window the peak is. Note that we have found a new
focusing effect, that is surprising because the BHG
beam under study is composed of two beams that,
separately, provide a zero-axial irradiance pattern.

5. Summary

We have derived a novel formulation for calculat-
ing the axial behavior of general Bessel beams aper-
tured by a radially-nonsymmetric window. We have
shown that the axial-irradiance pattern generated by

Žsuch beams is the same as that produced under
.plane-wave illumination along a certain straight line

by certain window. The window is such that its
circular-harmonic decomposition is governed by the
Bessel-beam form.

Our result allowed us to formulate the necessary
condition to obtain zero-axial irradiance, and to re-
visit the study of propagation properties of BG beams.
Specifically, we have obtained, in a quite simple
way, an analytical formula for the on-axis irradiance
distribution. Moreover, we have found a transcen-

dental equation that provides the value of the axial
range where the axial-irradiance distribution remains
nearly constant; in other words, the axial range
where the BG beam exhibits a nearly nondiffracting
behavior.

Additionally, with the aim of exploiting all the
power of our approach, we have analyzed the axial
behavior of more complex, radially-nonsymmetric,
apertured Bessel beams. In particular, we have ob-
tained an analytical expression for the on-axis irradi-
ance distribution corresponding to a HGB beam.
From this formula we have found that, depending on
the value of the ratio parameter C a , two differentŽ .
kinds of axial behavior can appear. For low values of
this parameter, smooth variation of the axial irradi-
ance is observed. However, for large values of C a ,Ž .
a novel, unexpected, focusing effect is observed.
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