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Three-dimensional behavior of apodized
nontelecentric focusing systems

Manuel Martı́nez-Corral, Laura Muñoz-Escrivá, and Amparo Pons

The scalar field in the focal volume of nontelecentric apodized focusing systems cannot be accurately
described by the Debye integral representation. By use of the Fresnel–Kirchhoff diffraction formula it
is found that, if the aperture stop is axially displaced, the focal-volume structure is tuned. We analyze
the influence of the apodizing function and find that, whereas axially superresolving pupil filters are
highly sensitive to the focal-volume reshaping effect, axially apodizing filters are more inclined to the
focal-shift effect. © 2001 Optical Society of America
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1. Introduction

In the past few years many researchers have studied
the distribution of light near the focus of an apertured
monochromatic converging spherical beam.1–12 The

aper by Li and Wolf 13 is particularly notable in this
regard. In this paper the authors analyze the three-
dimensional ~3D! irradiance distribution near the fo-
cus when a spherical wave is diffracted by a circular
aperture ~see Fig. 1!, and they obtain

I~P! 5 I0S1 2
u

2pNL)
2

3 U*
0

1

expS 2 i
1
2

ur2DJ0~vr!rdrU2

, (1)

where NL 5 rmax
2 ylf stands for the so-called Fresnel

umber of the focusing geometry and I0 stands for the
irradiance at the focal point F. In addition,

u 5 2pNL

zyf
1 1 zyf

, (2)

v 5 2pNL

ryrmax

1 1 zyf
. (3)
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From these equations it follows that, when NL 3 `,
he field is symmetrical around the focal point, as
redicted by Lommel’s theory.1 However, for de-

creasing values of NL, the point of maximum irradi-
ance moves from its coincidence with the geometrical
focus toward the center of the aperture. Moreover,
because of the nonlinear relation between the nor-
malized coordinates, u and v, and the actual spatial
coordinates, z and r, the symmetry around the focus

isappears.
Fewer publications have been devoted to the case of

he focal field structure generated by nontelecentric
ocusing systems, i.e., when a circular aperture, un-
er monochromatic plane-wave illumination, is
laced in front of a converging spherical lens. This
s a much more interesting and general situation,
ince in most real focusing setups, such as microscope
bjectives, the aperture stop does not coincide with
he principal plane of the system. This geometry
as discussed by Wenzel,14 who considered only the
n-axis irradiance distribution, and also in a paper by
heppard and Török,15 where the treatment is gen-

eralized to include the irradiance at off-axis points.
In this paper the previously reported results are

generalized to the case in which nontelecentric focus-
ing systems are apodized, and we analyze how the
apodizing function influences the magnitude of the
modifications experienced by the focal volume.

2. Basic Theory

Let us consider a nontelecentric focusing system that
is apodized by a radially symmetric, purely absorbing
diffracting screen with amplitude transmittance t~r0!
and radial extent rmax, as shown in Fig. 2. An ap-
proach to calculate the 3D amplitude distribution in
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the neighborhood of the lens focus is to apply the
Fresnel diffraction theory to calculate, first, the am-
plitude on the lens plane. In a second step this
amplitude is used as the input in the Fresnel for-
mula to calculate the amplitude distribution in the
focal region. Although this seems to be the natural
approach for this calculation,15 next we consider a
more-illustrative procedure. In our approach we
first calculate the complex amplitude of the parax-
ial scalar field at the plane conjugated to the screen
plane, which is given by16

U0~r90! 5 expS 2 i
k

2z9
r90

2D 1
um0u

tS r90
um0u

D , (4)

where m0 stands for the transverse magnification of
the lens.

Note that this amplitude distribution is quite sim-
ilar to the one that appears when the focal volume
generated by a diffracting screen under spherical il-
lumination is studied,13 as described in Section 1.

herefore we hypothesize that similar results can be
btained in both situations.
Then, when we proceed as in Ref. 13, i.e., when we

se the amplitude U0~r09! as the input in the Fresnel
ropagation formula, it is straightforward to obtain

Fig. 1. Schematic representation of the focusing setup. A mono-
chromatic converging spherical wave, with focus at F, illuminates
a circular aperture of radius rmax.

Fig. 2. Schematic layout of a nontelecentric focusing system. At
the image plane, O9, the amplitude distribution is given by the
product between the geometrical-optics image of the screen and a
quadratic phase factor with focus at F9.
he expression for the amplitude distribution in the
eighborhood of the focus, namely,

U~u, v! 5 2pNLS1 1
zN

2pNL
uD*

0

1

t~r!

3 expS2 i
1
2

ur2DJ0~vr!rdr , (5)

here the maximum value for the radial coordinate r
as been normalized to unity and the axial position in
he focal region is specified through the nondimen-
ional axial variable

u 5 2pNL

zN

1 2 zNzN

. (6)

n the above equations, zN 5 zyf and zN 5 zyf ~see Fig.
!. Parameter NL 5 rmax

2 ylf represents the Fresnel
umber of the lens, as defined by Li and Wolf.13

The transverse radial coordinate has been ex-
pressed through the nondimensional variable

v 5 2pNL

rN

1 2 zNzN

, (7)

here rN 5 r9yrmax.
Finally, since our aim is to analyze the structure of

the 3D irradiance distribution, we write

I~u, v! 5 I0S1 1
zN

2pNL
uD2

3 U*
0

1

t~r!expS2i
1
2

ur2DJo~vr!rdrU2

, (8)

here I0 5 uU~0, 0!u2.
Note that this formula is almost the same as that in

Eq. ~1!. The only difference is that now the irradi-
nce distribution also depends on the parameter zN.
On the basis of Eqs. ~6!–~8! the following features

bout the 3D-field structure can be summarized:

~a! When the focusing system is telecentric ~zN 5 0!,
he attenuation factor ~1 1 zNuy2pNL!2 reduces to

unity, and moreover the variables u and v are pro-
portional to zN and rN, respectively. Thus the 3D
irradiance distribution is symmetric about the focus.
In addition, the scale of the 3D pattern is proportional
to 1yNL in both the transverse and the axial direc-
tions. Note that this result, which is unobtainable
in the focusing geometry of Fig. 1, corresponds to that
predicted by the Debye representation of the focal
field.17

~b! When telecentricity is lost ~zN Þ 0!, the symme-
ry is broken because the relations between u and v
nd the actual spatial coordinates are no longer lin-
ar. The relations are

zN 5
u

2pNL 1 uzN

, (9)
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rN 5
v

2pNL 1 uzN

. (10)

From these nonlinear transformations it is clear that
the transverse patterns corresponding to the same
modulus of u but different sign will have different
cale and that their positions will not be symmetrical
bout the focus. Specifically, each transverse pat-
ern ~defined by the value u! is axially displaced and
caled by a factor

M 5 1 1
zN

2pNL
u . (11)

n addition to the break of the symmetry in the dif-
raction term that is due to the nonlinear coordinate
ransformations, we should take into account the at-
enuation factor in Eq. ~8!. This factor is responsible

Fig. 3. Halftoning representation of the numerically evaluated
irradiance distribution in the meridian plane corresponding to the
axially apodizing filter of Eq. ~12!: ~a! telecentric system and ~b!

ontelecentric system. The parameters for the calculation were
L 5 12.25 and zN 5 0 ~telecentric! or zN 5 20.853 ~nontelecen-

tric!.
166 APPLIED OPTICS y Vol. 40, No. 19 y 1 July 2001
or the axial displacements of the local maxima and,
ence, of the point of maximum irradiance. This is
he so-called focal-shift effect.5

~c! When we deal with linear and shift-invariant
maging systems, resolution is one of the most impor-
ant features. It is usual to define resolution in
erms of the Rayleigh criterion.1 According to this
riterion the transverse resolution is determined by
he width of the central lobe of the transverse irradi-
nce impulse response of the imaging system. The
xial resolution is determined by the width of the core
f the axial irradiance impulse response. If we con-
ider a nontelecentric imaging system, then its axial
nd transverse resolutions are determined by the
idth of the core of I~zN, rN 5 0! and I~zN 5 0, rN!,

espectively. According to the above reasoning it is
lear that for any value of zN the transverse resolu-
ion is constant and proportional to 1yNL ~note that,

Fig. 4. Halftoning representation of the numerically evaluated
irradiance distribution in the meridian plane corresponding to the
axially superresolving filter of Eq. ~13!: ~a! telecentric system and
~b! nontelecentric system. The parameters for the calculation

ere the same than those of Fig. 3
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for fixed values of rmax and l, NL is proportional to the
numerical aperture of the system!. In contrast, the
axial resolution is governed by the value of NLyzN.

herefore one can conclude that by simple axial dis-
lacement of the aperture stop the axial resolution of
he system can be tuned while the transverse reso-
ution remains unchanged.

3. Influence of the Pupil Function

In Section 2 we carried out the analysis of the focal
structure for nontelecentric focusing systems, but we
did not investigate the influence of the pupil function.
The analysis revealed in general terms that the far-
ther the pupil filter is from the lens front focal plane
~that is, the farther the system is from being telecen-
tric!, then the higher the asymmetry induced in the
ocal volume. Now we address the following ques-
ion: Is it possible to predict for a given value of NL

when a pupil function is more inclined than other
screens to experience reshaping effects? To answer
this question, it is necessary to take into account that,
when uzNu increases, a double effect takes place: loss
f symmetry and focal shift.
Let us assume that we are dealing with an axially

uperresolving pupil filter. In this case an axial-
rradiance distribution in which the central lobe be-
omes narrower is produced ~compared with that of
he circular aperture!. This narrowness is accompa-
ied by a severe increase of the strength of the sec-
ndary axial sidelobes, which also become narrower.
hen this kind of filter produces a focal volume con-
isting of a set of large out-of-focus lobes. Since
hese large lobes are centered in points with rela-
ively high value for the axial coordinate, u, they are
ighly sensitive to the scaling effect. However, if we
onsider the attenuation term in Eq. ~8!, we find that
his kind of filter is particularly inclined to experience
he so-called focal-switch effect,18,19 provided that zN

, 0, or even an inverse focal-switch effect if zN . 0.
ote that the latter effect has never been reported on

o our knowledge.
We can conclude that axially superresolving filters,
hen used as pupil functions in nontelecentric focus-

ng systems, are highly sensitive to the deformation
f the diffraction term and are particularly inclined
oward the ~direct or inverse! focal-switch effect.

Axially apodizing pupil filters produce a widening
f the central lobe of the axial-irradiance distribution,
hich is accompanied by a decreasing strength of the

econdary sidelobes. When such filters are used in
elecentric focusing systems, a focal volume is ob-
ained in which most of light is concentrated in an
llipsoidal central lobe. Outside this lobe the light
ensity is exceedingly small. Therefore we can state
hat this kind of filter is not too sensitive to the scal-
ng effect when the system is no longer telecentric.
owever it is particularly inclined to focal shift,
hich can be direct or inverse depending on the sign

f zN A paradigmatic example of this statement is a
lter with Gaussian transmittance. In such a case,
hatever the value of zN, we always obtain a Gauss-

an beam in the image space. What is governed by
he value of zN are the waist width and the waist
osition ~i.e., the focal shift!.
To illustrate the above reasoning in Figs. 3 and 4,
e have represented, in halftone pictures, the irradi-
nce distribution in the meridian plane for two filters
nd for telecentric and nontelecentric focusing sys-
ems.

As an axially apodizing filter we select20

ta~r! 5 5 0 if 0 # r # Î2y2

1 if Î2y2 , r # 1
. (12)

he axially superresolving filter is8

ts~r! 5 51 if 0 # r # 1y2
0 if 1y2 , r # Î3y2
1 if Î3/2 , r # 1

. (13)

n Fig. 5 we have plotted both annular binary filters,
hich, to allow for a direct comparison of results,
ave the same light throughput.
Note from Fig. 4 that the large sidelobes produced

y the axially superresolving filter are highly sensi-
ive to the reshaping effect. However, the large cen-
ral lobe produced by the axially apodizing pupil filter
see Fig. 3! is more inclined to the focal-shift effect.
t is also remarkable that in this case there is almost
o deformation within the central part of the central

obe, and then the focal shift is the only noticeable
ffect.

4. Conclusions

We have shown that the 3D-irradiance distribution in
the focal volume provided by an apodized nontelecen-
tric focusing system is influenced by both the axial
position of the apodizer and its amplitude transmit-
tance. Concerning the influence of the apodizing
function, we have found that, whereas axially super-
resolving filters are highly sensitive to the focal-

Fig. 5. Actual two-dimensional representation of the binary fil-
ters: ~a! axially apodizing and ~b! axially superresolving.
1 July 2001 y Vol. 40, No. 19 y APPLIED OPTICS 3167
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volume scaling effect and to the focal-switch effect,
the axially apodizing filters are more inclined to ex-
perience the focal-shift effect.
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