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Abstract

A procedure for designing pupil filters for applications where specified axial responses are required is developed. The
method is based on the mathematical relationship between the axial impulse response of a system and the Wigner
distribution function (WDF) associated to its pupil function. The desired axial irradiance, which can also have a
predefined behavior depending on spherical aberration, is used to obtain this WDF by tomographic reconstruction. The
synthetic pupil is retrieved from this distribution. © 2001 Published by Elsevier Science B.V.
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1. Introduction

The control of the axial impulse response pro-
vided by optical systems is a matter of interest in
many applications as, for example, those in which
either extended depth of focus or axial superreso-
lution is needed. Several techniques have been re-
cently used to design pupil masks for achieving
such particular features [1,2]. However, in most of
these techniques optical aberrations are not taken
into account. For most real systems the influence
of optical aberrations on the axial irradiance must
be reduced, but there are particular cases in which
certain amount of aberration is desirable, for ex-
ample, to obtain a larger maximum axial intensity
than in the aberration-free case [3]. Therefore, the
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synthesis of pupil masks for specified axial irradi-
ance distribution which also keep control over
aberrations have a wide range of potential appli-
cations. Motivated by this idea, in this work we
propose a novel pupil synthesis procedure to gen-
erate any wanted axial irradiance distribution with
a spherically aberrated system. The method is
based on the mathematical relationship between a
phase-space representation of the pupil function
and the axial irradiance response provided by the
system [4]. The required pupil mask is obtained
through a tomographic reconstruction in the
phase—space domain.

2. Basic theory

Let us start by considering the irradiance im-
pulse response, computed under the Fresnel-Kir-
chhoff approximation, provided by an aberrated
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optical imaging system [5]. It is straightforward to
show that, for axial points and a spherically ab-
errated system, this response is given by [4]
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t(r,0) being the pupil function of the system ex-
pressed in polar coordinates. In Eq. (1), w4 denotes
the coefficient for Seidel’s spherical aberration,
and z is the axial coordinate as measured from the
paraxial image plane, located at a distance /' from
the pupil. These distances are related to the max-
imum extent a of the pupil function through the
defocus coefficient w, defined as
—za®

oy = Zf +Z) . (2)
In this way, the left-hand side of Eq. (1) can be
understood as a function of the axial distance z by
substituting the parameter w,, from Eq. (2).

In Ref. [4] it has been shown that, for large
Fresnel numbers, the set of axial irradiances given
by Eq. (1) can be expressed as
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the bidimensional (2-D) Wigner distribution
function (WDF) of a modified pupil function

a(0) = to(r) = = / " i(r,0)do, (5)
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where the variable ( is defined as
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Eq. (3) shows that the axial behavior of the ir-
radiance distribution provided by a system with an
arbitrary value of spherical aberration — wyg is a
parameter in this equation — can be obtained from
a single WDF of the mapped pupil ¢({) of the
system, by integrating the values of this function
along straight lines in the phase-space domain.
The slope, m = —2w4 /A, and the y-intersect,
vo = —(wa9 + wa9) /2, of these lines are given by the
spherical aberration and defocus coefficients.

For our purposes we can take advantage of this
representation by recognizing that the line integral
in Eq. (3) for all values of wyy and wyy is actually
the Radon transform of the above WDF, or the
Radon—Wigner transform (RWT) of the function
q({) [6]. In fact, by use of the geometry shown in
Fig. 1, this RWT may be considered as the pro-
jection of W,(x,v) onto an axis x’ rotated an angle
¢ with respect to the x axis [7]. In mathematical
terms
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Fig. 1. Phase—space coordinates for the Radon transform of the
WDF.
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where R is an operator representing a Radon
transform. Therefore it is straightforward to show
that Eq. (3) can be written as

(w03 wa0) = R [ (x,v);x', B, (8)

where
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Eq. (8) is the keystone of our design method. In
fact, the synthesis procedure starts by taking no-
tice that this equation can be inverted to obtain the
2-D WDF by means of the inverse Radon trans-
form. In this way, we can perform a tomographic
reconstruction of W, from the projected function
I(m; m49), representing the irradiance at the axial
points — variable wyy — for a sufficient set of values
of W40.

There are several forms of the inverse Radon
transform. Their common basis is the central-slice
theorem, which, applied to our case, states that the
one-dimensional (1-D) Fourier transform of the
projection I(wy; w49) — the Radon transform — and
one line of the 2-D Fourier transform of W,(x,v)
are mathematically identical. This line corresponds
to the v/ axis of the rotated phase-space coordi-
nates (see Fig. 1) defined by the value of the
spherical aberration coefficient. Thus, the entire
2-D Wigner space can be sampled on a set of lines
defined by the parameters w,, and w4. The im-
plementation of the inverse Radon transform
makes use of the filtered back-projection algorithm
[8]. The back-projection operation converts a 1-D
function — the axial irradiance for a fixed value of
(49, In our case — into a 2-D function by smearing
it uniformly along the original projection direction
— defined by the V' axis in Fig. 1. Then the algo-
rithm calculates the summation function which
results when all back-projections are summed over
all projection angles ¢ i.e., different values of wy.
The final reconstructed function W,(x,v) is ob-
tained by a proper filtering of the summation im-
age [8].

Once the WDF is synthesized with the values of
the input axial irradiances, the pupil function is

obtained by inverting the WDF in Eq. (4) as fol-
lows

q(0) = 1

q*(0)

As a final step, the geometrical mapping in Eq.
(6) is inverted to provide f#(r) = ¢({). Note that
the recovered pupil function is actually the angu-
lar average of a more general pupil #(r,0), ie
to(r) = t(r,0) only if ¢(r,0) is rotationally sym-
metric. This fact can be considered as another
degree of freedom of our synthesis procedure, in
such a way that to obtain a predefined axial be-
havior the designer can choose between several
functions #(r, #) having the same angular average

t()(}").

/_OO W,(x,(/2) exp(—i2nx{)dx.  (10)

3. Examples

In order to illustrate the method we have nu-
merically simulated two examples. In the first one
we tested our proposal with the synthesis of an
annular apodizer that has been extensively studied

[9-11]
sine{2(2)" - 05]} — cos {2x(£)" 05}
t(r) = 5 B
{2x[(2)" - 03]}
X circ(g). (11)

Fig. 2a pictures a profile of this pupil function.
It has been shown that its main features are to
increase the focal depth and also to reduce the
influence of spherical aberration. From this func-
tion we numerically determined, first the W, func-
tion using the WDF definition in Eq. (4), and
thereby the projected distributions defined in Eq.
(3), obtaining the axial irradiance distribution for
different values of spherical aberration. In this case
we used 1024 values for both wy /A and wyy/A,
ranging from —16 to +16. We treated this distri-
butions as if they represented the desired axial
behavior for a variable spherical aberration, and
we reconstructed the WDF using a standard fil-
tered back-projection algorithm for the inverse
Radon transform [7,8]. From the reconstructed
WDF we obtained the synthesized pupil function
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Fig. 2. (a) Amplitude transmittance of the pupil represented by
Eq. (11) as a function of the normalized radial coordinate. (b)
Phase—space tomographic reconstruction of the same pupil.

to(r) by performing the discrete 1-D inverse Fou-
rier transform of W, in Eq. (10). The result is shown
in Fig. 2b. As can be seen the amplitude trans-
mittance of the synthesized pupil function closely
resembles the original apodizer in Fig. 2a.

In a second example we considered the more
interesting situation. We start by selecting a set of
axial irradiances and then calculating the required
pupil function. Our intention was to design a pupil
mask with high sensitivity to spherical aberration
on the axial irradiance. That is to say a pupil that
will produce a constant intensity profile for dif-
ferent defocus coefficients in a certain range, but
only for a single value of the spherical aberration
coefficient. Fig. 3 shows the result obtained with
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Fig. 3. Amplitude transmittance of the synthesized pupil func-
tion obtained for a high sensitivity to the spherical aberration
and providing a constant axial-intensity profile.

the same sampling of the aberration functions as in
Fig. 2. In this case we considered zero-intensity
values for my /A out of the range —0.025 < w4/
A < 0.025. In order to evaluate this last result, the
synthesized pupil can be compared favorably with
the annular pupils obtained for focusing applica-
tions in Ref. [1]. In fact in this reference the em-
ployed synthesis methods did not allow the use
of the spherical aberration as a free parameter.
However, as those examples were computed for
w49 = 0 and in our case I (wy; w4) = 0 except for a
small range of w4y, both results are qualitatively
comparable.

4. Conclusions

We have presented a novel method to design
pupil masks that are able to generate arbitrary
predefined axial irradiances. The method is based
on the tomographic reconstruction of the WDF
associated to the pupil. Besides the novelty in its
conception, the main feature of the method is the
fact that the designer can program the axial irra-
diance to hold a predefined behavior for differ-
ent values of spherical aberration. Two examples
have been presented: the first one to validate the
method, and the second one to show how to design
a pupil for a system with high sensitivity to the
spherical aberration but producing a constant in-
tensity-axial profile.
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Further work is currently being done to im-
prove the efficiency of the practical numerical im-
plementation of the technique here proposed. For
instance, the mathematical symmetries exhibited
by the WDF can be used to decrease the number of
samplings needed for its accurate tomographic
reconstruction. As a result, a noticeable drop in
the required computation time is expected.

Additionally, as is well known, the RWT of
a function is closely related to the magnitude
squared of its fractional Fourier transform (FrFT)
[12]. Consequently, the left-hand side of Eq. (8)
equals the magnitude square of the FrFT of order
determined by the parameters mp, and y.
Therefore, some properties of the FrFT could be
conveniently exploited in this context.
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