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One-dimensional iterative algorithm for three-dimensional
point-spread function engineering
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We present a new method with which to binarize pupil filters designed to control the three-dimensional
irradiance distribution in the focal volume of an optical system. The method is based on a one-dimensional
iterative algorithm, which results in efficient use of computation time and in simple, easy to fabricate binary
filters. An acceptable degree of resemblance between the point-spread function of the annular binary filter
and that of its gray-tone counterpart is obtained. © 2001 Optical Society of America
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Control of the beam structure in the three-dimen-
sional (3D) region that surrounds the focal point of an
optical system is an important task in various appli-
cations, such as in conventional imaging systems,1,2

optical data storage readout heads,3 and confocal
scanning microscopy.4 Specifically, in confocal mi-
croscopes the 3D point-spread function (PSF) of the
system is a matter of critical interest, so several efforts
to control its shape by the use of radially symmetric
pupil f ilters have been reported.5 – 8

Iterative halftoning algorithms9 constitute an im-
portant class of digital halftoning methods.10 They
can be used not only for binarization of images but
also for binarization of diffractive optical elements,
in particular, pupil filters that shape the PSFs of
imaging systems. Taking into account the required
computational effort, we believe that the iterative
Fourier-transform algorithm (IFTA) is one of the
most effective iterative halftoning procedures.11 In
a previous paper a digital halftoning technique
derived from a classic IFTA was developed that
binarizes radially symmetric gray-tone pupil f ilters
such that their symmetry is preserved.12 The filters
calculated with this technique12 were aimed only at
shaping the axial profile of the three-dimensional (3D)
PSF. From the point of view of 3D imaging, e.g.,
confocal scanning microscopy, it is of importance to
shape the whole 3D distribution of the PSF. Here
we demonstrate that this can be done by means
of annular binary f ilters that are computed by a
one-dimensional (1D) IFTA. This means that one can
shape the 3D light-field distribution about the focal
point by using an iterative procedure in which both
pupil and PSF constraints are imposed on one-column
matrices. Our approach is based on an axial form of
the sampling theorem.13,14 To demonstrate the utility
of our method we use it to compute the binary versions
of axially superresolving and Gaussian filters, and
we analyze the corresponding 3D PSFs, which closely
approximate those of the original gray-tone filters.
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The extremely high computing-time eff iciency of our
method could be useful, for example, for implement-
ing in real-time radially symmetric pupil f ilters by
means of programmable liquid-crystal spatial light
modulators.15

Let us start by considering the normalized ampli-
tude PSF of an aberration-free focusing system that
is apodized by a purely absorbing radially symmetric
pupil f ilter, namely,

h�u, v� � 2p
Z 1

0
t�r�exp�2i2pur2�J0�vr�rdr . (1)

In Eq. (1) the function t�r� stands for the properly
scaled amplitude transmittance of the pupil filter.
Variables u and v represent, respectively, the axial
and the transverse focal coordinates as expressed in
optical units.16

It is known that the function h�u.v� can be written
as

h�u, v� �
1
2p

1X̀
m�2`

h�m, 0�hC�u 2 m, v� , (2)

where hC �u, v� represents the normalized 3D ampli-
tude PSF that corresponds to the circular aperture and
has to be expressed in terms of the Lommel functions.
This important formula, which represents the axial
form of the sampling theorem,13 indicates that the 3D
amplitude PSF of an apodized system results from
the coherent superposition of an infinite number of
properly axially shifted PSFs that correspond to the
circular aperture. The shifts are equal to integer
numbers. We construct the weighting-factor set of
this superpositon by sampling the axial PSF of the
purely absorbing pupil filter in the axial nulls of a
circular-aperture PSF.

Because h�u, v� is completely determined by the val-
ues of h�u, 0� at u � 0, 61, 62, . . ., assuming that the
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circular-aperture PSF is known, it is convenient to ex-
press h�u, 0� in a simpler form. To this end we per-
form the nonlinear mapping q�m� � t�r�m�� such that
r�m� � 1

p
m 1 0.5. Then, from Eq. (1) with v � 0,

the axial PSF can be written, aside from an irrelevant
phase factor, in the following way:

h�u, 0� � p
Z 0.5

20.5
q�m�exp�2i2pum�dm . (3)

Functions q�m� and h�u, 0� constitute a
Fourier-transform pair in which the function h�u, 0� is
band limited. Thus the function can be completely
recovered, according to the sampling theorem, from a
set of its samples properly distributed in the whole
axis u.

Let us suppose now that we are interested in cal-
culating a binary f ilter, tB�r�, whose PSF closely ap-
proximates that of a gray-tone f ilter t�r�, which suits
a particular need for 3D imaging (e.g., for superreso-
lution). From the above reasoning [Eqs. (2) and (3)]
it is apparent that q�m� is precisely the function that
one should binarize to reach this end. As we need an
algorithm specially designed to produce a strong re-
semblance between the low-frequency spectra at the
appropriate sampled points of the function q�m� and
its binary counterpart qB�m�, the 1D version of the
IFTA was selected as the binarization technique. The
IFTA has been described elsewhere (see, for example,
Ref. 12, in which a block diagram and a thorough study
of the constraints that are necessary for implementing
the IFTA are provided).

To execute the IFTA efficiently in this particular
problem, one must take into account that in most cases
of interest the terms that significantly contribute to
the series of Eq. (2) are those with small m. Then the
geometrical parameters of the IFTA should be chosen
such that the axial points u � 0, 61, 62 coincide with
those for which h�u, 0� is sampled first on execution of
the IFTA. Those parameters are M , the number of
equidistant samples of q�m�, and N , the number of ele-
ments in the one-column matrix �hi� whose ith element
is hi � h�iDu, 0�, where Du is the axial sampling dis-
tance in the PSF domain �i � 0, 61,62, . . . , 6N�2�.
It is evident that the coincidence of u � 0, 61, 62, . . .
with at least some u � iDu takes place when Du � 1�k,
where k is a positive integer number. From Eq. (3)
it results that the simplest case of k � 1 implies that
M � N . For k . 1 the above coincidence takes place
for N�M � k. This case is extensively used in compu-
tation by means of the fast Fourier transform, in which,
to obtain suff icient sampling in the spectral domain,
functions are sampled at M points and surrounded by
zeros to form a vector of N . M pixels. This is usu-
ally done to produce sufficient sampling in the spectral
domain.

The utility of the proposed method was established
in two numerical experiments. First, we considered
the axially superresolving parabolic filter q�m� � 4m2,
whose real amplitude transmittance is t�r� � �2r2 2

1�2. This filter provides a signif icant narrowing of
the central lobe of the axial PSF. Second, we consid-
ered the Gaussian filter t�r� � exp�2p2r2� or q�m� �
exp�2p2�0.5 1 m��. We used these gray-tone f ilters to
check the accuracy of our method in two quite different
situations. The parabolic f ilter compresses the focal
volume, whereas the Gaussian filter expands it.

In our numerical simulation we started the algo-
rithm by sampling the function q�m�, for both filters,
in a small number of equally spaced points, M � 33.
As a result of a comprehensive empirical study, we es-
tablished that no improvement is achieved by setting
N . M . In other words, an increase in the size of the
one-column matrices used in the algorithm does not
improve the results and merely increases the computa-
tional effort. Therefore we formed a vector composed
of N � 33 pixels.

The amplitude transmittances of the binary f ilters
obtained by the 1D iterative technique are shown in
Fig. 1. In Fig. 2 we have plotted the contours of con-
stant irradiance in the meridian plane for the para-
bolic f ilter and its binary version. From comparison
of the two figures it is apparent that the differences
between the PSFs are negligible and that the binary
pupil provides the desired result. Specifically, we cal-
culated the differences, at any point of the focal volume,
between the irradiance PSF of the gray-tone filter and
that of its binary version. The maximum value for
this difference was found to be less than 1% of the peak
normalized irradiance.

In Fig. 3 we present the normalized 3D irradiance
PSFs for a Gaussian filter and its binary counterpart.
Note that in this case the figures do not seem to
match so well as in Fig. 2. This result is a visual
effect that is due to the smoothness of the shape
of the 3D PSF. In fact, in this case the maximum

Fig. 1. Binary filters obtained by use of a 1D IFTA for
M � 33: (a) parabolic filter, (b) Gaussian f ilter. Dashed
curves, amplitude transmittance of the gray-tone f ilters.
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Fig. 2. Contours of constant normalized irradiance in
the meridian plane corresponding to (a) a parabolic filter,
(b) the binary version.

Fig. 3. Contour of constant normalized irradiance in the
meridian plane corresponding to (a) a Gaussian filter,
(b) the binary version.

value for the irradiance differences was less than 2%.
We emphasize how, by simply illuminating, with a
monochromatic plane wave, a pupil f ilter consisting
of a circular aperture obstructed by an annular mask
[see Fig. 1(b)], one can accurately reproduce the 3D
structure of a Gaussian beam.

To summarize, we have presented a method for
binarizing radially symmetric, purely absorbing pupil
filters designed to control the 3D structure of the
focal volume in an apodized system. Our method
is based on the use of a properly adapted version of
the IFTA. We apply the 1D IFTA to the mapped
transmittance of the f ilter. Importantly, although we
deal with 3D fields, we need to apply the Fourier tools
only to one-column matrices. As follows from the
axial sampling theorem, the 3D PSF of an apodized
system can be recovered with a set of regularly spaced
axial samples. Hence our algorithm uses matrices
with a very low number of pixels (1 3 33 in our
numerical experiment). If we compare our approach
with other common realizations of Fourier matching
in which, for any transverse plane, 2D matrices with
at least 256 3 256 pixels are used, it exhibits a highly
remarkable saving in computing time.
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