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Abstract Ophthalmic epidemiological studies frequently deal with
ocular refractive errors, which are commoniy expressed in the form
sphere/cylinder x axis. However, this representation has been shown
not to be the most suitable one for performing statistical analysis.
Although alternative analytical and graphic methods to represent this
kind of data have been developed, these formalisms have often gone
unnoticed by researchers, despite their usefulness and versatility.
Besides, there has been no discussion of how each of them fits in with
a particular type of study.

In this paper, several mathematical representations of dioptric power
are revisited in a comprehensive way. The aim is to encourage
researchers in ophthalmology and optometry to use these formalisms
in their epidemiological studies, thus profiting from their exactitude
and simplicity. Consequently, the emphasis is not on complicaicd math-
ematical derivations but on how to use these representations. Their
potential and suitability in different applications is analyzed in detail.
In addition, some examples are presented to illustrate the mathemati-
cal methods considered. :

Key words Astigmatism; refractive errors; dioptric power matrix;
statistical analysis

Introduction The standard representation of dioptric power
expressed in the form sphere/cylinder x axis is satisfactory for tradi-
tional clinical purposes but unsuited to mathematical and statistical
processing, such as that needed in certain epidemiological studies. For
example, when it is necessary to add or subtract spherocylinders to
calculate the internal ocular astigmatism or to determine the axis mis-
alignment on fitting soft contact lenses, the use of the standard nota-
tion is rather cumbersome since the units and the measuring system of
cach of the three parameters are different.’ In certain cases, the use of
the spherical equivalent as a single parameter overcomes this draw-
back. However, this is certainly not the best choice because part of the
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information is lost, since the same spherical equivalent can be obtained
from different refractive errors. A consequence is the lack of consis-
tency of the results,

As statistical analysis is an outstanding component of ophthalmic
epidemiological studies, the introduction of modern scientific repre-
sentations of dioptric power is necessary o take into account not only
the spherical equivalent but the relative influence of each of the three
parameters that define a refractive status. Besides, these representa-
tions provide an easy and unambiguous way to add or subtract sphe-
rocylinders* and even permit a graphic representation of results in an
Euclidean space.

Several formalisms have been developed, starting from the matrix
representation of dioptric power proposed by Long.? Some of them
are extremely simple and very well adapted to represent and analyze
statistical distributions involving spherocylindrical powers.*® Besides,
cach has its own advantages and all of them constitute different alter-
natives to face a given problem. In this paper, their relative performance
and advantages in some clinical statistical applications are discussed.
Although our aim is to show how and when these methods should be
used, avoiding heavy mathematical discussions, a brief description of
the different methods is presented first for the sake of completeness.

The Long formalism One of the main disadvantages of repre-
senting the dioptric power in the traditional notation is its ambiguity.
Actually, refractive errors can be expressed in three ways: the bicylin-
drical expression, the minus cylinder one or its transposition. This fact
becomes a drawback when it is desired to collect data from several
clinicians so as to perform an epidemiological study. The mathematical
representation of dioptric power as a matrix in the way developed by
Long?® overcomes this shortcoming since it is invariant during trans-
position of the prescription. In this sense, the power of an astigmatic
surface — or thin lens — can be represented by the power along its prin-
cipal meridians. If they form an angle « with the coordinate system —
in the standard notation S/C x a —, the dioptric power of the surface
can be expressed as:?

o fa —Csinccosae S+Ccos’a

F:[f” fu}_[ S+Csin*a Csm(xcosa} -
Eq.(1) is the dioptric power matrix of a spherocylinder defined by $/C
x ot. It must be noted that this matrix is symmetric and its diagonal ele-
ments represent the power of the lens in the horizontal and vertical
meridians. It can be proven’ that the mathematical expression to return
to the standard representation (S/C x o) can be obtained from the trace
(r=f.. + f..) and the determinant (d = f,.f.. - f..f.,) of the dioptric power
matrix as follows;

C=2f-ad; S=(t-C)f2; tano=(S-Ff.)/Fa. (2)

The choice of the plus or minus cylinder sign in Eq.(2) is arbitrary, so
that the final solution will be in the form of a plus or minus cylinder
transposition.

L. Mufioz-Escrivi & W.D. Furlan



Example 1 The refractive error +1.00 X 180° —3.00 x 90° expressed in
bicylindrical form can also be expressed as +1.00; ~4.00 X 90° Or —3.00;
+4.00 X 180°. By the use of Eq.(1), these three notations converge to a
single one given by the matrix:

~Csinctecose  S+Ccos’a o 1f

- { S+Csin*w —Csinacosa}:[—g, o}
This feature demonstriates that the matrix notation of dioptric power
is very useful to analyze data and to carry out numerical statistical
studies, since data processing is immediate starting from these matri-
ces, 1. e., no intermediate step is required to normalize the notation of
the collected data. Another important advantage of this representation
is that the power resulting from the addition - or subtraction — of two
or more spherocylindrical powers can easily be obtained by adding or
subtracting its corresponding matrices.

Example 2 'The addition of two spherocylinders with power

R, = +1.00; —2.00 x 70° and R, = +3.00; —1.00 X 85° is certainly not

obvious by the use of this notation, but expressed in the form of

matrices the result is simply obtained:

FeF<F :[—0.766 0.643}+{2.008 0.087}:[1.242 0.730].
0.643 0.766] |0.087 2.902 0.730 3.758

From this result, the conventional notation can be obtained by the use
of Eq.(2): +4.00; -3.00 X 75°.

These advantages make the Long formalism a suitable method to
compute the kind of spherocylindrical data that require mathematical
processing, It has proven to be a useful tool in apphcations that imply
linear operations on spherocylindrical powers, such as to study the
internal astigmatism in a population (sece Example 3) or the astigma-
tism induced by any ocular surgery.® In addition, this method permits
one to determine easily the axis misalignment on fitting soft contact
lenses or to check the nominal power of these manufactured lenses.’
For instance, if A is the patient’s ocular refraction and B the refraction
obtained over a mislocated trial lens, then the subtraction A-B pro-
vides the clinician with the degree of axis mislocation together with the
power of the lens. As the mislocated lens can be in crror not only in its
axis, but also in its power, this method permits one to verify in situ the
actual back vertex power of the manufactured contact lens with respect
to its specified back vertex power. Long representation is also used to
study prismatic effects; to determine the prismatic deviation that pro-
duces a certain decentriment or, on the other hand, to calculate the
decentriment necessary to generate a certain deviation.* Questions of
this kind, which usually require a tedious calculation, are reduced to a
simple algebraic operation by use the of the matrix formalism.

Example 3 Let us consider a hypothetical simulation devoted to

seeing how the matrix method works. Suppose that a study has been
carried out in order to determine the internal astigmatism of a certain
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AR FR AC F(,' FR_FC* At‘

~3.25 X 55° —2.18  1.53 ~3.00 X 50° —-1.76  1.48 | [—0.42 o005 —0.60 x 85°
[ 1.53 fx.qu { 1.48 —1.24J | 0.05 0.17}

—2.50 X 70° [—2.21  0.80 —1.75 X 65° —1.44 0.67 [—0.77 o013 —0.83 x 81°
| 0.80 —0.ng J‘ 0.67 —0.31] L 0.13  0.02]

—0.50 X 35° [-0.16 0.23 —1.00 X 1§° —-0.07 0.25 .10 —0.20 —0.70 % 91°
| 0.23 —0.34} [ 0.25 «~0.93J |~0.02 0.60 J

—1.25 X 907 [—1.25 0.00 —0.25 % 95° -0.32 —0.02 —1.00 0.02 -1.00 % 8g°
| 0.00 o.onJ [4).02 0.00 ] | 0.02 0.00}

~2.75 X 120° —2.06 ~I1.19] —2.50 X 125° -1.68 -1.17 —0.35 -0.02 —0.52 X g2°
|—1.10 —0.69 | Lr 17 —0.82] | —-0.02  0.14 J

—1.00 X 75° [—0.93 0.5 ] —0.50 X 50° —0.20 0.25 [—0.64 0.00 -0.78 % g9o°
| 025 —0.07] | 0.25 -—0.21] | 0.00 0.14J

~3.75 X 160° —0.44 -—T1.21] ~4.00 X 165° —0.27 —1.00] [—0.17 -0.21] -0.72 X 107°
[—1.21 -3.31] |—1.00 -3.73] | —0.21  0.42 |

-0.25 X 10° 0.0  0.04 ] —0.75 X 5° —0.01  0.07 ] 0.00  —0.02] —0.51 X 03°
L 0.04 —0.24 ] | 0.07 —0.74 [—0.02 0.50 |

—1.75 X 100° [—1.70 —0.30] —-1.00 X 105° [~0.93 —0.25 -0.76  —0.05 | —0.78 x 94°
|—0.30 —0.05 | | —0.25 —0107} {—0.05 0.01 |

—1.25 X 15° [-0.08 o031 -1.75 X 10° [-0.05 030 —0.03  0.0@ —0.56 % 8g°
| 031 -IL.I7| 030 -I 70} [ 0.01 0.53}

*This column may not add up due to rounding,

TABLE L. Simulation of a sample to
obtain the distribution of internal
astigmatism by the use of Long

matrices. Ag is the refractive

astigmatism, A the corneal
astigmatism and A, the internal
astigmatism. F, and F. are the
matrices corresponding to Ay and

Ag, Tespectively.
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population. If Ay is the refractive astigmatism and A the corneal astig-
matism, then the internal astigmatism (A,) will be obtained from the
difference of their respective matrices as Fr — Fe. In Table 1 we show
the values Ar and A together with their associated matrices. In the
last column, the internal astigmatism is easily obtained by subtracting
the matrices. For simplicity we have restricted the sample to ten values.

Taking into account that Eq.(1) and Eq.(2) are easily programmable
in a low-cost computer, the Long notation is a good choice when the
aim of research is, for example, a numerical analysis of the results. In
spite of this, it has been rated by some authors as rather abstract and
inaccessible to clinicians,'™"" perhaps due to the lack of a graphic rep-
resentation to support the usefulness of the calculations. However, the
most important feature of the matrix representation is that it provides
a basis for other powerful representations of dioptric power, such as
the three-dimensional spaces treated in the next section.

Representation of the dioptric power in a three-
dimensional Euclidean space A graphic or geometric re-
presentation of the results is often required when carrying out a
statistical analysis of refractive data expressed as $/C x o.'* Harris*
proposed a three-dimensional Euclidean space to represent this kind
of data. He considered the matrix F of Eq.(1) as the linear combina-
tion of three specific dioptric powers:'

L. Mufioz-Escriva & W.D. Furlan
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0 0
F_(S+Csin’(x)[l J+(S+Ccoszu)[° }
0 0 0o 1

+(—+2Ccosa sinoc)L/(:E I/f} (3)

Provided that the three matrices in Eq.(3) can be considered as an
orthonormal base of a three-dimensional Euclidean space, the coordi-
nates corresponding to any dioptric power in such a space are given by
the coefficients of Eq.(3). So, a specific dioptric power is defined by a
single point in this space and can be determined by a vector 2 with
coordinates:

h=8S+Csina h,=—v2Ccosasinee h,=85+Ccos’a {4}
This vector is a very useful magnitude to quantify dioptric powers (see
Figure 1). Comparison of Eq.(1) with Eq.(4) yields: f,, =k, f.. = fi. =

h,/~2 and f,, = h,. Therefore, the standard notation will be reobtained
by use of the same expression as with the Long formalism (Eq.(2)):

C=tjri=ad: §=0-C)/=; tanu-hz/ﬁ, (5)

where t =k, + h, and d=hh —(h/Vz).

Horizontal
cylinders axis

Spheres y .

!
| b
JCC piane ! P hz
|
| - ’
hl
Vertical

cylinders axis
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Fig. 1. Three-dimensional space
obtained according to the Harris
notation. The dioptric power is
defined by the vector A.
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Fig. 2. Three-dimensional space
obtained according to the Deal and
Toop notation. The dioptric power is
defined by the vector 4.
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Another useful orthogonal base of the three-dimensional dioptric
power space can also be derived easily from Eq.(1). Expressing this last
equation as:

F=(S+Csin® a)[; 2] +(S+Ccos? cx)[z (j +{-Ccosasin a)[(: ;] (6)

and by the use of trigonometric identities, we obtain:

F= (—g—coszu)[; _DI]-i- {-% sin 2&){? (I)] + (S + %)‘; (j (7

Therefore, the new base defined by the matrices in Eq.(7) constitute
an alternative coordinate system for the dioptric power space, where a
given power is fully specified by use of the coordinates:

C C ., C
C, :—;cosztx; Cys :—;smza; M:S+;_ (8)

Figure 2 represents a typical power vector in this coordinate system.
This base was first proposed by Deal and Toop® and later by other
authors™* using different approaches. Besides, various researchers
had previously used the coefficients of Eq.(8), although they had not
recognized them as the coordinate base of a three-dimensional
space.'”* The scalar magnitude that characterizes a spherocylindrical
power is now the modulus of the vector d that defines a dioptric power

Spheres
A M
R /1
/ VAN
rd rd |
Vs g d ., d |
PR R |
| | !
I i !
I I '
| 1 |
| | :
I i
| I s > C45
V4
L TN
| Vs
: ) 2a L
JCC plane
Co
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in this coordinate system. Besides, according to Figure 2, it is obvious
that we can return from the values C,, C,; and M to the standard
notation as:

o C 1 C .
CZ*M S:M—; azzarctan C“-‘ ©)

o

Whenever C, is negative, then go° must be added to o.

Both three-dimensional bases allow a graphic representation. In case
of statistical studies, this kind of representation may be used to display,
for instance, confidence regions about a mean power. Satisfying the
requirements of statistics, in these three-dimensional representations
distances are independent of the meridian taken as reference when the
cylinder axis is determined. Therefore, the shape of confidence regions
remains invariant, or preserved, during changes of the meridian chosen
as reference.™ Besides, since a single point in any of the three-
dimensional spaces represents a certain spherocylindrical power, the
superposition of different powers is consequently simply the addition
of the vectors that define them.

* In the three-dimensional space according to Harris notation, the axes
h, and h, correspond to cylinders whose axes are vertical and horizon-
tal, respectively, while the axis h, contains the Jackson cross-cylinders
(JCC) with axes at 45° and 135°. The spherical powers lie on an axis
perpendicular to Ak, (see Figure 1). A singular plane is the JCC plane.
As its spherical equivalent is zero, this plane goes through the origin
and, of course, contains the axis k..

On the other hand, the coordinate system of Figure 2 is perhaps more
mtuitive and easier to understand. Purely spherical powers appear
along the axis M, while the Jackson cross-cylinders are represented in
the plane M = o defined by the axes C, and C,,. Therefore, as any sphe-
rocylindrical power can be expressed as the combination of a pure
sphere — the spherical equivalent — and a JCC lens, it admits a straight-
forward representation in this coordinate system. It must be pointed
out that, independently of the coordinate system selected, the spheres
form a line, the JCC a plane and the pure cylinders a cone.

Example 4 Let us perform the analysis of the data considered in
Example 3 by the use of these vector representations. From Eq.(4), we
first obtain the vectors hy, by and h;, which correspond to Ag, Ac,
and A; (see Table 2). When the sample is plotted in Harris three-
dimensional space (see Figure 3) it can be seen how the tips of the
vectors corresponding to each item of information are distributed,
within a certain range, along the axis #,. Since ki, contains the cylinders
whose axes are vertical, from the graphic representation of the results
it can be confirmed that the orientation of the internal astigmatism is
about 9o° and also that its power is around 0.50-0.75D. It seems clear
that, for the epidemiological study proposed in this example, the use of
Harris coordinates of the power space is a very good choice because
the axis 4, itself contains the kind of dioptric powers we are working
with (pure cylinders at go°). This fact provides an easy interpretation
of the results from the plot.

Statistical analysis in astigmatism
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Ag hg

Ac

Ac A hy |£21

-3.25 X 55° (~2.18,2.16, —1.07)

~3.00 X 50° (~1.76, 2.09, —1.24) —0.60 x 85° (—0.60, 0.07, 0.00) 0.60

—2.50 X 70° {—2.21, 1.14, —0.29) ~1.75 X 65° (-1.44, 0.95, —0.31) -0.83 x 81° (-0.81, 0.18, —0.02) 0.83
—-0.50 X 35° (-0.16, 0.33, —0.34) —1.00 X I5° (-0.07, 0.35, —0.93) 0,70 X 9I1° {~0.70, —0.02, 0.00) 0.70
—1.25 X 90° (-1.25, 0.00, 0.00) —0.25 X 95° {—0.25, —0.03, 0.00) —1.00 X 8g° (—1.00, 0.02, 0.00) 1.00
—2.75 X 120° {~2.06, —1.68, —0.69) —2.50 ¥ 125° (—1.68, -1.66, —0.82) —0.52 x g2° (—0.52, —0.03, 0.00) 0.52
—1.00 X 75° (-0.93, 0.35, —0.07) —0.50 X 50° {(—0.29, 0.34, —0.21) —0.78 x go® {—0.78, 0.00, 0.00) 0.78
—3.75 x 160° (-0.44, -1.70, —3.31) —~4.00 X 165 (—0.26, -1.41,-3.73) —0.72 X 107° {—0.66, —0.28, —0.06) 0.72
—0.25 X 10° (—0.01, 0.06, —0.24) —0.75 % 5° (~0.01, 0.09, —0.74) -0.51 X 93° (—0.51,-0.04, 0.00) 0.51
—1.75 X 100° {-1.70,—0.42,-0.05)  -1.00 X 105° (—0.93,—0.35,—0.07) -0.78 x 9q° {(—0.78, —0.08, 0.00) 0.78
~1.25 X 15° {—0.08, 0.44, —1.17) ~1.75 X 10° (—0.05, 0.42, —1.70) —0.56 x 8g° (—0.56, 0.01, 0.00) 0.56
TABLE 2, Same sample as in Table 1 hy
but the analysis is performed by the

0.2+,

use of the Harris formalism. Ag, A
and h, are Harris vectors
corresponding to Ag, A¢ and A4,
respectively.

Fig. 3. Representation of the
distribution of internal astigmatism
in the Harris reference system from
the sample in Table II.
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On the other hand, when the data in Example 3 are represented by
the use of Deal and Toop notation, a set of different values resuits (see
Table 3). As happens with Harris notation, the sample distribution can
be analyzed from a single parameter, the modulus of d;, which is rep-
resented in Figure 4 for the same sample. In this representation, as we
plot pure cylinders with axes close to 9o°, they lie along a line that forms
an angle of 45° with the C, and M axis. Although, in this example, the
Deal and Toop coordinate system seems to offer no advantages with
respect to the Harris notation, there are other kinds of studies in which
it does. In fact, the modulus of the vector 4 has an interesting feature,
since all the vectors with the same modulus |dl produce the same
defocus that a spherical power of +ld| D would produce and therefore
a visual acuity can be associated with them.* For instance, the defocus
produced by a single sphere of +0.50D and a spherocylindrical lens of
+0.50; —1.00 X 60° arc equivalent. Then, the visual acuity associated with
both refractions is the same. It can be verified by the use of Eq.(8) that
the modulus |d|=C: +Ci+M* for both lenses is precisely 0.50. Thus,
this fact permits us to estimate how visual acuity changes depend on
the defocus from the modulus of 4;.

L. Mufioz-Escriva & W.D. Furlan



Ag dr Ac de A, d; idl
-3.25 X 55° (—0.56, 1.53, —1.63) ~3.00 X 50° (—0.26, 1.48, —1.50) —0.60 x 80° (—0.30, 0.05, —0.30) 0.42
~2.50 X 70° (~0.96, 0.80, —1.25) —1.75 X 65° (-0.56, 0.67,~0.88)  —0.83 x81° (—0.39, 0.13, ~0.42) 0.59
-0.50 X 35° {0.09, 0.23, —0.25} -1.00 X 15° (0.43, 0.25, —0.50) —0.70 X 91° {-0.35,-0.01,-0.35) 050
—1.25 X 90° (—0.63, 0.00, —0.63) —0,25 X 95° {0.13,-0.02,-0.13) —1.00 x 8¢9° (—0.50, 0.02, —0.50} 0.71
—2.75 X 120° (—0.69, —1.19, —1.38}) —2.50 X 125° (-0.43,-1.17, —1.25) -0.52 x 92° (-0.26, —0.02, —0.20) 0.37
—1.00 X 75° (-0.43, 0.25, —0.50) -0.50 %X 50° (—0.04, 0.25,—0.25) —0.78 x go° (—0.40, 0.00, —0.40) 0.55
—3.75 X 160° (1.44, —1.21, ~1.88) —4.00 X 165° (1.73, —1.00, —2.00) -0.72 X 107° (-0.30,—0.2,—0.36) 0.51
—.25 X 10° {0.12, 0.04, —0.13) —0.75 X 5° (0.37, 0.07, ~0.38) —0.51 X 93° (-0.25,-0.03, —0.26) 0.36
—1.75 X 100° (-0.82,-0.30,~0.88)  —1.00 % 105° (—0.43, —0.25, —0.50) —0.78 x 94° (—0.39, ~0.0§,-0.40)  0.55
—1.25 X 15° (0.54, 031, —0.63) -1.75 X 10° (0.82, 0.30, —0.88) —0.56 X 89° {—0.28, —0.01, —0.28) 040
M TABLE 3. Same sample as in Table 1
. but the analysis is performed by the
7 use of the Deal and Toop formalism.
dg, dc and d, are the vectors
Cys 0.5.] corresponding to Ag, Ac and 4,
1 Co respectively.
1
0.5
05
Fig. 4. Representation of the
0.5 05 distribution of internal astigmatism
* : .
| x ¥ 05 ) in the Deal and Toop reference
* o system from the sample in Table III.
Note that the axes C; and C,; have
1 been rotated.

The choice of a particular coordinate sysiem depends on the specific
application. For instance, if it is desired to plot only astigmatic values,
then Harris notation provides the best interpretation of the results
because the /, and h, coordinates correspond to the vertical and hori-
zontal axes, respectively. On the other hand, due to its relationship with
visual acuity, Deal and Toop notation is recommended to analyze the
basis of certain refractive optometric techniques, such as the principle
of operation of the JCC on refining both the axis and the power of the
correcting cylinder during subjective refraction.” Both representations
have found important applications recently, such as the analysis of the
dynamic nature of the refractive ocular status determined by means of
an autorefractometer,’” the comparison of the refraction obtained with
an autorefractometer and by the subjective method,” and to quantify
differences between two values of dioptric power.” Another important
feature is that these notations have also been used to visualize the time
course of changes in refraction. In this way, changes in refraction over
time are described by the trajectory of the tip of the moving vector in
the power space.’” Moreover, this trajectory can provide insights into
a variety of clinical phenomena, such as the temporal evolution of the
refractive status of the eye and its changes under several circumstances,

Statistical analysis in astigmatism
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such as after refractive surgery — quantifying residual refractive
errors —, during ortho-keratology, during the progression of myopia, or
in the course development of a disease that may affect the refractive
status of the eye.

Discussion We can conclude that, on the one hand, Long's
formalism fits quite well when the only purpose is to make a numeri-
cal analysis of the results. On the other hand, if a graphic represen-
tation is required, the use of three-dimensional power spaces is the
best option. Depending on the kind of spherocylinders the researcher
wishes to plot, different coordinate systems can be selected. In partic-
ular, if the results must be interpreted to analyze changes in visual
acuity, it is preferable to choose the Deal and Toop representation.
The use of the notations we have dealt with in this paper does not re-
quire complicated mathematics. Researchers need only change from
the traditional notation to the most appropriate one by the use of
Eq.(3), Eq.{6) or Eq.(10} and then statistical analysis can be applied as
usual.
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