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Abstract

We present a formulation for a suitable description of the focal shift in optical waves that have an off-axis focus. This

shift that is primarily produced along the chief axis is given in terms of the focal distance and depends only on a

parameter that is named as the generalized Fresnel number. Any non-uniform, either truncated and non-apertured

optical beam with off-axis focus may be considered.
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1. Introduction

It is well-known that when a monochromatic,

uniform, converging, spherical wave is diffracted

by a circular screen, the point of maximum irra-

diance is not located at the geometrical focus but is
somewhat closer to the aperture [1–3]. Li and Wolf

[4] showed that the relative focal shift, that is, the

ratio of such a shift of the point of maximum ir-

radiance respect to the distance between the geo-

metrical focus and the plane of the aperture,

depends only on the Fresnel number of the

aperture when viewed from the geometrical focus.

The three-dimensional irradiance distribution in
low-Fresnel-number focusing systems has been

analytically evaluated [5,6], and experimental evi-

dence of the presence of a focal shift has been re-

ported elsewhere [7,8]. Much more previously it

had been found that a very similar phenomenon

also exists if the focused beam is an unapertured

[9] or a truncated Gaussian laser beam [10], but
only after Li and Wolf studies has been recognized

that the relative focal shift can be expressed in

terms of an effective Fresnel number [11,12].

More sophisticated focusing arrangements have

been presented in the literature. For instance, Li

[13] studied the axial behavior in the focal region

of spherical non-truncated elliptical Gaussian

beams. The existence of two irradiance peaks was
explained by defining two Gaussian Fresnel num-

bers associated to the minor and major axes of the

elliptical Gaussian beam. In fact, this situation is

encountered in other optical systems such as dif-

fracting lenses that generate a great number of foci
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along the optical axis. In this case, a multiple focal

shift and focal switch may be presented under low

Fresnel numbers associated with every focus [14].

Recently L€uu et al. [15–17] have paid a special
attention to the problem of the focal shift in

windowed Bessel beams, specially Bessel–Gauss
beams. In analogy to spherical waves, focused

Bessel beams are characterized by a Bessel–Fresnel

number. Thus, the point of maximum irradiance

along the optical axis is determined approximately

in terms of this parameter. However, when this

kind of electromagnetic waves are focused they

generate a ring pattern in the focal region, thus

confirming an oblique focusing behavior [18,19].
Consequently, the evaluation of the focal shift in

this kind of optical waves must be addressed by

evaluating the displacement of the point of maxi-

mum irradiance along a single tilted axis passing

through the focal ring. The previous statement

agrees with the fact that the irradiance distribution

of an off-axis point object in the meridian plane of

an optical imaging system of low Fresnel number
is deformed along the tilted chief ray [20].

The aim of this paper is to present a simple

formulation for a suitable description of the focal

shift in electromagnetic waves that have an off-axis

focus. Focused, apodized Bessel beams are in-

cluded since they possess the ability of concen-

trating light around an off-axis ring-shaped region.

For that purpose we derive the off-axis irradiance
distribution of such a focused optical beam along

the tilted chief axis. In order to achieve the point of

maximum irradiance along this axis we follow

Mart�ıınez et al. [12]. The relative focal shift is then
approximately evaluated in terms of a unique pa-

rameter, which we call as the generalized Fresnel

number as a generalization of a previously defined

effective Fresnel number. Finally we apply this new
formulation for the evaluation of the relative focal

shift to a Bessel–Gauss beam and to a uniform off-

axis focused wave.

2. Off-axis focal shift

Let us consider an off-axis focusing, mono-

chromatic beam whose amplitude transverse dis-

tribution at a given plane, which from now on we

will denominate as the reference plane, is described

by the function pðx0; y0Þ. The coherent beam is

focused in such a way that the wavefront curvature

radius, that is, the distance between the reference

plane and the focal plane, is given by OF ¼ f (see
Fig. 1). For the sake of clarity we will write ex-
plicitly the part of the transverse amplitude cor-

responding to the focusing spherical wavefront,

which may be produced by an optical element such

as a refracting thin lens, and whose center of cur-

vature is located at the axial point of the focal

plane. Note that we consider the off-axis focus is

generated as a consequence of the propagating

beam characteristics and not by the focusing agent.
If we assume a scalar paraxial approximation,

which holds for low-angular focused waves, we

may evaluate the diffracted field at a given point

P ðx; y; zÞ in the focal region by simply using the
Fresnel–Kirchhoff diffraction formula [21], giving

Uðx; y; zÞ ¼ exp½ikðzþ f Þ�
ik zþ fð Þ

Z Z 1

�1

expð�ikf Þ
f

	 exp
�
� i k
2f

x20
�

þ y20
��
pðx0; y0Þ

	 exp i
k

2ðzþ f Þ ðx
h�

� x0Þ2

þ ðy � y0Þ2
i	
dx0 dy0; ð1Þ

where k is the wavelength of the radiation,

k ¼ 2p=k and the axial coordinate z is measured
from focus, F .
As assumed previously, the optical wave has

one off-axis focus, which is located at a point of

Fig. 1. Schematic diagram of the focusing set-up.
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the focal plane given by Qðx1; y1Þ. Bessel beams
generating a focal ring may be considered by

taking one point from this focal region. Thus the

region of interest is now addressed over the vi-

cinities of the tilted chief axis, which pass through

the axial point of the reference plane, O, and the
point Q. For simplicity, we express Eq. (1) in cir-
cular coordinates given by

x ¼ r cos h; x0 ¼ r0 sin h0;

y ¼ r sin h; y0 ¼ r0 cos h0;
ð2Þ

where the Cartesian coordinates ðx0; y0Þ have been
appropriately written in order to ease the calcula-

tion. The points of the focal volume belonging to

the chief axis may be described in terms of the

azimuthal coordinate

h1 ¼ arctan
y1
x1
; ð3Þ

and the equation

r
zþ f

¼ r1
f

 sin a; ð4Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

p
and we have introduced a

low-angular approximation, which is valid in the

paraxial regime. Now from Eq. (1) we may write

the irradiance distribution along the chief axis gi-

ven by Eqs. (3) and (4) in circular coordinates as

IðzÞ ¼ 2p
kf ðzþ f Þ

� �2 Z 1

0

tðr0Þ
����

	 exp � i2p z
2f kðzþ f Þ r

2
0

� �
r0 dr0j2; ð5Þ

where

tðr0Þ ¼
1

2p

Z p

�p
prðr0; h0Þ:

	 exp
�
� i2pr0

sin a
k
sinðh1 þ h0Þ

�
dh0 ð6Þ

and

pr r0; h0ð Þ ¼ p r0 sin h0; r0 cos h0ð Þ:
At this point, it is important to highlight that

the one-dimensional function tðr0Þ depends on the
azimuthal variable h1 characterizing the chief axis.
Azimuthally non-symmetric Bessel beams gener-

ally possess more than one chief axis, what implies
that tðr0Þ may be different for the axes under

consideration. However, in the particular case of a

radially symmetric beam prðr0Þ we find that the
function tðr0Þ is independent on the azimuthal
angle h1.
Another significant point is that Eq. (5) is

equivalent to that corresponding to the on-axial
irradiance distribution of a spherical beam whose

focus is at the optical axis. In the latter case, the

function tðr0Þ stands for the azimuthal average of
the amplitude distribution prðr0; h0Þ at the refer-
ence plane [12], which is assumed to be real and

non-negative in order to guarantee that the in-

coming wave has a focus at the point F in the sense
of Geometrical Optics [22]. In our case we must
perform a more complicated integral transform

given in Eq. (6). Note that both results are in

agreement when substituting a ¼ 0. However, it is
important to point out that tðr0Þ is imposed to be
real, what ensures that the diffracting wave has an

off-axis focus at the focal point Q of the chief axis.
In order to find the point of maximum irra-

diance along the chief axis we should determine
the first-derivative zeros of Eq. (5), what usually

involves the evaluation of a transcendental

equation. Following Mart�ıınez-Corral et al. [12]
we can avoid this drawback by expanding IðzÞ
into a Taylor series around the point Q. As a
consequence we may give an analytical expression

of the relative focal shift, that is, the ratio of the

displacement suffered by the maximum of irradi-
ance along the chief axis respect to the curvature

radius of the off-axis focusing beam on the ref-

erence plane f , as

zmax
f

¼ � 1

p2N 2g
; ð7Þ

where we have introduced a new parameter, de-

nominated as the generalized Fresnel number Ng
which is written as

Ng ¼
r
kf

: ð8Þ

In this expression r stands for the standard devi-
ation of the mapped function tð ffiffiffiffi

r0
p Þ, i.e.

r ¼ M2

M0

"
� M1

M0

� �2#1=2
; ð9Þ
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where

Mn ¼ 2
Z 1

0

tðr0Þr2nþ10 dr0: ð10Þ

By means of the previously imposed reality to

the function tðr0Þ, reality of r andMn is also found.

As we expected the previously defined generalized

Fresnel number is inversely proportional to the
wavelength and the wavefront curvature radius of

the focusing beam, as occurs with the conventional

Fresnel number [4,12].

First we point out that the evaluation of the

relative focal shift in an off-axis focusing optical

wave depends only on the previously defined

generalized Fresnel number. This important

statement leads to the fact that two different fo-
cusing set-ups, independently from the amplitude

distribution over the reference plane and the tilt of

the chief axis, characterized by the same general-

ized Fresnel number suffer the same displacement,

in relation to the wavefront curvature radius.

Additionally, the mentioned dependence follows a

negative inverse square law, what implies that the

point of maximum irradiance along the chief axis
with no exception comes closer to the reference

plane for decreasing Ng. This effect does not nec-
essarily hold for other focusing geometries such as

truncated uniform cylindrical waves [23] and ab-

errated focusing optical systems [24].

3. Moments with Besselian kernel

According to Mart�ıınez-Corral et al. [12], Eq. (7)
is only valid if tðr0Þ is a non-negative real function.
First, reality is required since a non-vanishing

component in the phase of the function tðr0Þ may
be associated with the existence of aberrations in

the wavefront of the off-axis focusing beam. On

the other hand, positivity is also imposed in order
to guarantee that the coherent beam has a focus in

the sense of Geometric Optics. However, this is a

weaker restriction since there exist optical waves

that produce off-axis light spots but positivity is

not satisfied. In these cases we may also apply the

present formalism.

To ensure that the function tðr0Þ is real, except
for an irrelevant constant phase factor expð�ic=2Þ,

we may impose that pðx0; y0Þ expðic=2Þ is an Her-
mitic function, that is,

p
r ðr0; h0 þ pÞ
prðr0; h0Þ

¼ expðicÞ; 06 c < 2p: ð11Þ

Note that a great variety of off-axis focusing

optical beams that we commonly find in the lab-

oratory hold the previous restriction. A tilted

uniform plane wave that undergoes the action of a

diffraction-limited refracting lens or a propagating

Bessel–Gauss beam are clear examples that have

encouraged our study. In Section 4 we will apply

our formalism to these examples and evaluate the
magnitude of the relative focal shift.

Once we have pointed out some of the proper-

ties the function tðr0Þ should exhibit in order to
represent an off-axis focusing beam, we perform

the transformation given in Eq. (6). Unfortunately

it is possible to find only a few number of cases

where such an integral may be analytically per-

formed. However, in order to give an analytical
expression of the angular transformation of Eq. (6)

we may expand prðr0; h0Þ into a circular harmonic
series giving

prðr0; h0Þ ¼
X1

m¼�1
pmðr0Þ expðimh0Þ; ð12Þ

where

pmðr0Þ ¼
1

2p

Z p

�p
prðr0; h0Þ expð�imh0Þdh0: ð13Þ

The harmonic expansion in Eq. (12) results of

great usefulness either when the number of coeffi-
cients contributing to the series is low or when the

expansion converges rapidly. By substituting Eq.

(12) into Eq. (6) we find

tðr0Þ ¼
X1

m¼�1
pmðr0Þ expð�imh1ÞJm 2pr0

sin a
k

� �
;

ð14Þ
where Jm is a Bessel function of the first kind, order
m. Additionally, we have used the relation

1

2p

Z p

�p
exp½iðmh � x sin hÞ�dh ¼ JmðxÞ: ð15Þ

Another important simplification of Eq. (14) may

be found by making use of the relationship given
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in Eq. (11) what guarantees reality in the function

tðr0Þ. Thus this restriction can be particularized to
the coefficients pmðr0Þ yielding
p
�mðr0Þ
pmðr0Þ

¼ exp½iðc � mpÞ� ð16Þ

what means that coefficients with negative order

may be expressed in terms of those with the same

order in absolute value. Therefore, we may express

Eq. (14) in a reduced form as

tðr0Þ ¼ p0ðr0ÞJ0 2pr0
sin a

k

� �
þ 2 exp

�
� i c
2

�

	
X1
m¼1

jpmðr0Þj cos mh1
n

� c
2
� arg½pmðr0Þ�

o

	 Jm 2pr0
sin a

k

� �
: ð17Þ

According to Eq. (7) we may evaluate the rel-
ative focal shift of an off-axis focusing beam in

terms of the generalized Fresnel number, which

depends on the radiation wavelength k, the cur-
vature radius over the reference plane f , and the
standard deviation r. When using the expansion of
Eq. (14) in order to express tðr0Þ analytically we
find that the moments Mn and hence r are also
expressed by means of an expansion. By substitu-
tion of Eq. (14) into Eq. (10) we find

Mn ¼ 2
Z 1

0

tðr0Þr2nþ10 dr0

¼
X1

m¼�1
mn;m expð�imh1Þ; n ¼ 0; 1; 2; . . . ;

ð18Þ
where

mn;m ¼ 2
Z 1

0

pmðr0ÞJm 2pr0
sin a

k

� �
r2nþ10 dr0; ð19Þ

that is, we may express the moments of the func-

tion qðfÞ in terms of a series involving moments of
the Fourier coefficients pmðr0Þ with Besselian ker-
nel. Finally, by using Eq. (16) we find a symmetry
in the coefficients mn;m given by

m

n;�m

mn;m
¼ expðicÞ; ð20Þ

which may be used in the expansion of Eq. (18).

4. Examples

Some examples will allow us to clarify some

aspects of the presented formalism. Two common

off-axis focusing waves we find in the laboratory
are a uniform off-axis converging spherical wave

and a Bessel–Gauss beam generated, for example,

by an axicon that is illuminated by a spherical

Gaussian beam. Let us specifically discuss both

examples in detail.

4.1. Uniform off-axis converging spherical wave

The three-dimensional irradiance distribution

generated by an off-axis point object at the me-

ridian plane of a diffraction-limited optical imag-

ing system of low Fresnel number has been studied

by Namikawa [20]. He found a significant defor-

mation along the tilted chief axis and hence no

symmetries about the geometrical point image are

conserved in this case. If we consider a circular
clear exit pupil of radius a, the amplitude trans-
verse distribution of a uniform off-axis spherical

wave at the reference plane is then written as

prðr0; h0Þ ¼ expðik?r0Þcircðr0=aÞ; ð21Þ
where

circðrÞ ¼ 1; r6 1;
0; otherwise:

�
ð22Þ

Note that we have not included a quadratic phase

factor that is explicitly written in Eq. (1). In this case

both the transverse spatial coordinate r0 ¼ ðr0 sin
h0; r0 cos h0Þ and the transverse wave number

k? ¼ 2p sin a
k

ðcos h1; sin h1Þ ð23Þ

are given as a two-dimensional vector in such a

way that the vector k? provides the direction of

the off-axis chief ray (see Fig. 1).

In order to evaluate the off-axis irradiance dis-
tribution we first evaluate the one-dimensional

function tðr0Þ by introducing Eq. (21) into Eq. (6)
what yields

tðr0Þ ¼ circðr0=aÞ: ð24Þ
This transformed amplitude distribution at the

reference plane coincides with the azimuthal
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average of that given by a uniform on-axis spher-

ical wave. According to this analogy, we conclude

that within the paraxial regime the irradiance dis-

tribution along the tilted chief axis of an off-axis

spherical wave coincides with that given by an on-
axis spherical wave along the optical axis. In terms

of the generalized Fresnel number we first sub-

stitute Eq. (24) into Eq. (8) giving

Ng ¼
1ffiffiffiffiffi
12

p a2

kf
ð25Þ

what coincides with both the effective Fresnel
number of a uniform spherical wave given by

Mart�ıınez-Corral et al. [12] and, except for an ir-
relevant factor 1=

ffiffiffiffiffi
12

p
, the Fresnel number of the

focusing geometry as given by Li and Wolf [4], as

expected.

4.2. Bessel–Gauss beam

Bessel beams are of particular interest due to

the possibility of producing a diffraction-free

pencil of light. However, this kind of waves carry

an infinite amount of energy. In order to meet with

experimental feasibility we should consider aper-

tured Bessel beams. This is the reason why much

attention have been paid to the so-called Bessel–

Gauss beams, whose transverse amplitude distri-
bution may be written in the form

prðr0Þ ¼ J0ðkr0 sin aÞ exp½�ðr0=xÞ2�: ð26Þ

Optical beams with similar characteristics may be
produced with the aid of an axicon that is illumi-

nated by a spherical Gauss beam [25].

The three-dimensional diffraction field may be

thought as a superposition of a continuous set of

Gaussian beams, whose propagation axes are

evenly distributed on the surface of a cone [26].

The axis of the latter coincides with the optical axis

and its aperture angle is given by a. Consequently,
when investigating the focal shift observed in

Bessel–Gauss beams we should consider a tilted

axis satisfying Eq. (4). The off-axis irradiance dis-

tribution given in Eq. (5) is then evaluated in terms

of the one-dimensional function tðr0Þ. However,
profiting from the radial symmetry of prðr0Þ and
according to Eqs. (13) and (14) it is possible to

straightforwardly obtain this function giving

tðr0Þ ¼ J 20 ðkr0 sin aÞ exp½�ðr0=xÞ2�; ð27Þ
which is a non-negative real function, as expected.
The generalized Fresnel number corresponding

to a spherical Bessel–Gauss beam is then obtained

from Eqs. (9) and (8). Fortunately, we find an

analytical expression of the standard deviation r in
Eq. (27) giving a generalized Fresnel number of the

form

Ng ¼
x2

kf
1

2
ðb
� 

� 2Þ2 � bðb � 3Þ I1ðb=2Þ
I0ðb=2Þ

�

� 1
4

ðb
�

� 2Þ � b
I1ðb=2Þ
I0ðb=2Þ

�2!1=2
; ð28Þ

where b ¼ k2x2 sin2 a, and In stands for a modified
Bessel function of the first kind, order n.
In Fig. 2 it is depicted the generalized Fresnel

number, normalized to the previously defined

Gaussian–Fresnel number [11] given as NG ¼
x2=kf , versus the adimensional coordinate b and
some important conclusions are obtained from this

figure and Eq. (28). First, we may reproduce the
result concerning to a spherical Gaussian beam for

a vanishing b. This limit is equivalent to set a ¼ 0
what means that the Bessel function has no influ-

ence on the diffracting field after focalization, then

provoking the absence of any tilt over the focus. In

this case, the generalized Fresnel number is given

by Ng ¼ x2=kf , which coincides with the Gauss-
ian–Fresnel number. Otherwise, for high values of
a within the paraxial approximation we may con-

Fig. 2. The generalized Fresnel number, normalized to the

Gaussian–Fresnel number, versus the adimensional coordinate

b for a Bessel–Gauss beam.
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sider that the width of the Gaussian profile is large

enough so that the Bessel beam aperturing is weak.

In this case holds the inequality k sin a � x�1 what

is equivalent to make the limit b tending to infinity.
In this case, we find that the generalized Fresnel

number is given by

Ng ¼
1ffiffiffi
2

p x2

kf
: ð29Þ

In this regime we observe that the generalized

Fresnel number is nearly independent of the fo-
cused field tilt. In other words, the Bessel beam

determines the off-axis tilt the wave field suffers in

the diffraction process, but not the relative focal

shift magnitude. This result is in clear agreement

with that previously found for a uniform off-axis

focused field, whose generalized Fresnel number is

also independent on the off-axis tilt.

5. Discussion and conclusions

The focal shift effect, which is a phenomenon

observed in spherical beams with long focal dis-

tance, appears also in off-axis focused optical

waves. The shift is primarily produced along the

chief tilt axis, and its magnitude, given in terms of
the focal distance, depends only on a parameter

that is named as the generalized Fresnel number.

Any non-uniform, either truncated or non-aper-

tured optical beam with off-axis focus in the sense

of Geometrical Optics may be considered.

Under the scalar paraxial regime it is seen that

the irradiance distribution along the chief tilt axis is

governed by an integral transform that is equiva-
lent to that in on-axis spherical beams when con-

sidering the optical axis. However, first it is

necessary to perform an angular transformation

over its amplitude transverse distribution, what

may be interpreted as an apodizing effect. It is re-

markable that this apodizing effect depends on the

tilt of the chief axis, and hence the relative focal

shift varies according to the location of the off-axis
focus under consideration. However, we have

shown that this departure in terms of the tilt angle

is modest and, for example, spherical beams with a

focus at different points of the focal plane provides

the same amount of focal shift. Moreover, as oc-

curs with windowed Bessel beams the existence of

several off-axis foci on the focal plane should en-

force the evaluation of the generalized Fresnel

number that would be associated with different

chief axes characterizing the focusing set-up.

Acknowledgements

This work was supported by the Plan Nacional

I+D+I (Grant DPI2000-0774), Ministerio de

Ciencia y Tecnolog�ııa, Spain. Carlos J. Zapata-
Rodr�ııguez is also grateful for a postdoctoral grant
awarded by the Ministerio de Educaci�oon, Cultura
y Deporte, Spain.

References

[1] A. Arimoto, Opt. Acta 23 (1976) 245.

[2] J.J. Stamnes, B. Spjelkavik, Opt. Commun. 40 (1981) 81.

[3] J.H. Erkkila, M.E. Rogers, J. Opt. Soc. Am. 71 (1981) 904.

[4] Y. Li, E. Wolf, Opt. Commun. 39 (1981) 211.

[5] Y. Li, E. Wolf, J. Opt. Soc. Am. A 8 (1984) 801.

[6] Y. Li, J. Opt. Soc. Am. A 4 (1987) 1349.

[7] Y. Li, H. Platzer, Opt. Acta 30 (1983) 1621.

[8] G.P. Karman, A. van Duijl, M.W. Beijersbergen, J.P.

Woerdman, Appl. Opt. 36 (1997) 8091.

[9] G. Goubau, in: E.C. Jordan (Ed.), Electromagnetic Theory

and Antennas Part 2, Macmillan, 1963.

[10] D.A. Holmes, J.E. Korka, P.V. Avizonis, Appl. Opt. 11

(1972) 565.

[11] W.H. Carter, Appl. Opt. 21 (1982) 1989.

[12] M. Mart�ıınez-Corral, C.J. Zapata-Rodr�ııguez, P. Andr�ees, E.

Silvestre, J. Opt. Soc. Am. A 15 (1998) 449.

[13] Y. Li, Opt. Commun. 68 (1988) 317.

[14] Y. Li, J. Opt. Soc. Am. A 14 (1997) 1297.

[15] B. L€uu, W. Huang, Opt. Commun. 109 (1994) 43.

[16] B. L€uu, W. Huang, B. Zhang, F. Kong, Q. Zhai, Opt.
Commun. 131 (1996) 223.

[17] B. L€uu, W. Huang, J. Mod. Opt. 43 (1996) 509.

[18] Z. Bouchal, J. Wagner, M. Olivik, Opt. Eng. 43 (1995)

1680.

[19] C. Palma, Appl. Opt. 36 (1997) 1116.

[20] T. Namikawa, M. Shibuya, Optik 96 (1994) 93.

[21] J. Goodman, Introduction to Fourier Optics, McGraw-

Hill, Singapore, 1996.

[22] E. Collet, E. Wolf, Opt. Lett. 5 (1980) 264.

[23] C.J. Zapata-Rodr�ııguez, M. Mart�ıınez-Corral, P. Andr�ees, A.

Pons, J. Mod. Opt. 46 (1999) 129.

[24] A. Yoshida, T. Asakura, Opt. Commun. 109 (1994) 368.

[25] R.M. Herman, T.A. Wiggings, J. Opt. Soc. Am. A 8 (1991)

932.

[26] M. Santarsiego, Opt. Commun. 132 (1996) 1.

C.J. Zapata-Rodr�ııguez et al. / Optics Communications 216 (2003) 11–17 17


	Focal shift in optical waves with off-axis focus
	Introduction
	Off-axis focal shift
	Moments with Besselian kernel
	Examples
	Uniform off-axis converging spherical wave
	Bessel-Gauss beam

	Discussion and conclusions
	Acknowledgements
	References


