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Analytical Evaluation of the Temporal Focal Shift
for Arbitrary Pulse Shapes

Jesús Lancis, Vicent Climent, Jose Caraquitena, Genaro Saavedra, Manuel Martínez-Corral, and Pedro Andrés

Abstract—In this letter, we analyze the propagation of linearly
chirped arbitrary-shaped light pulses through a parabolic disper-
sive medium to derive an analytical formula of assessing the lo-
cation of the transverse plane where the pulse root-mean-square
width is minimum. Closed form expressions for compressed pulses,
which are independent of the input pulse shape, are demonstrated.
In this way, we demonstrate that both the relative temporal focal
shift and the minimum pulsewidth are solely determined by two
factors, the temporal equivalent of the Fresnel number of the ge-
ometry and the pulse quality factor, i.e., the temporal analogue of
the spatial 2 beam quality factor. Some examples are discussed.

Index Terms—Optical beam focusing, optical pulse compression,
optical pulses, optical transient propagation.

SECOND-ORDER dispersion is the relevant physical mech-
anism that controls short pulse propagation if higher order

dispersion and nonlinear effects are negligible. Under the above
assumption, pulse evolution along the axis is described by the
linear Schrödinger-like equation [1], [2]

(1)

In the above expression, stands for the slowly varying
amplitude of the pulse envelope and is the so-called proper
time, i.e., . Of course, the dispersion properties of
the parabolic dispersive medium are determined by the coeffi-
cients and , which are defined, respectively, as the first and
second derivative of the propagation constant , evaluated at
the carrier frequency . Equation (1) is similar to the paraxial
wave equation that governs diffraction of light for one-dimen-
sional (1-D) structures provided that the second-order disper-
sion coefficient is replaced by [1], [2]. On the basis of
this analogy, one can transfer into the temporal domain many
useful concepts that were first developed in the spatial domain,
such as temporal imaging [3], [4], temporal self-imaging [5],
[6], and pulse propagation description by means of the pulse
quality factor [7].
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In this letter, we focus our attention on the temporal
focal-shift effect. Its spatial counterpart is a diffraction phe-
nomenon observed when dealing with weakly focused beams.
In these beams, the transverse plane where the intensity
root-mean-square (rms) width is minimum does not appear
at the geometric focal plane [8], but is displaced toward the
aperture. In the temporal domain, a similar situation emerges
when a linearly chirped pulse with smooth amplitude profile
propagates through a parabolic dispersive medium. In practice,
there are several techniques to achieve linear chirping of pulses,
such as those based on electrooptic modulation [3] or sum-fre-
quency generation [4]. Furthermore, linearly chirped parabolic
pulses, which propagate self-similarly in a Yb-doped fiber
amplifier, have also been confirmed by numerical simulations
and experiments [9]. Linearly chirped hyperbolic secant pulses
in optical fiber amplifiers with distributed parameters have also
been demonstrated [10]. From a practical point of view, the
above solutions of the nonlinear Schrödinger equation with
gain are well-suited for efficient pulse compression in a second
linear step using a parabolic dispersive medium to compensate
for the linear chirp.

Although, it is widely recognized that the shortest pulse du-
ration occurs when the spectral phase of the field is constant,
the problem to find a closed-form expression to calculate both
the location of the maximum compression and the compression
degree for chirped pulses with an arbitrary profile is not an easy
task. Explicit expressions for the evaluation of the compres-
sion degree of frequency-chirped Gaussian [11], [12] or super-
Gaussian optical pulses [13] in parabolic dispersive medium
have been reported. The goal of this letter is to report on an
analytical formulation to calculate both the location of the max-
imum compression plane and the minimum rms width achiev-
able which are independent of the input pulse shape. At this
point, we claim that it is not possible the direct transposition
of the equations derived for the spatial focal-shift effect to the
temporal domain, since the spatial case is, in essence, a two-di-
mensional problem whereas the temporal one is a 1-D matter.

We begin by considering that the slowly varying pulse ampli-
tude at the input plane can be factorized as

(2)

Here, is a Fourier-transform-limited signal that describes
the initial pulse shape and is the chirp parameter. The origin
of the coordinate system in the temporal domain is selected so
that has zero mean time. Note that such an assumption
does not imply any loss of generality. To our purpose, it is also
convenient to express the chirp parameter as . In
this way, the quantity can be understood as the propagation
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distance in the quadratic medium such that is equal
to a Dirac delta function when is a constant. Accordingly,
we will refer to that point as the temporal focus of the chirped
pulse, and to as the pulse focal length [3]. Obviously, for the
compressing geometry one must assume , or, equivalently,

and have the same sign.
Next, we look for the transverse plane, located at the distance

, where the rms width of the propagated pulse is
minimum. We define (positive or negative) as the oriented
distance from the temporal focus to the above-mentioned plane.
Moreover, we will refer to the quotient as the relative
temporal focal shift by analogy with the spatial case. Note that,
as in [1] and [2], we conduct the analysis by using the rms width
rather than the full-width at half-maximum for the characteriza-
tion of pulses.

The squared rms width in intensity of the propagated pulse
is defined as , where

(3)

is the normalized -order moment of the instantaneous intensity
field. In the above equation, denotes the zeroth-order moment
of the function , i.e., the total power associated with
the pulse, which can be assumed to be unity.

Under the above assumptions, the evolution of the parameter
through a quadratic dispersive medium is determined by

the following parabolic law [13]:

(4)

where is the pulsewidth at the input plane. The coefficients
and are given by [13]

(5)

Equation (4) is valid independently of the original pulse form.
Note that (5) only involves the pulse amplitude at the input
plane.

We then proceed to evaluate the relative temporal focal shift.
We find from (4) that the minimum pulsewidth occurs for

, and, by inserting (2) into (5), we finally
find

(6)

The derivation of both formulae is not difficult to be carried out
and will be omitted here due to limited space. Note that in order
to write the above equation, first, we have introduced the ef-
fective temporal Fresnel number of the chirped pulse

. We recognize as the number of semioscil-
lations of the chirp function in (2) within the effective rms width
of the pulse envelope . Furthermore, we have also con-
sidered the quality factor of the unchirped pulse, as defined in
[7], which can be written as . Of course,
stands for the rms width of the Fourier transform of , i.e.,

.
Equation (6) is the key result of this letter. Of course, when

it is applied to the particular case of chirped Gaussian or
super-Gaussian pulses, we reobtain previously reported results
[11]–[13]. It is apparent that any chirped pulse suffers, in
principle, from focal shift. It should be emphasized that the
negative value of the ratio indicates that for the
converging focusing geometry. Therefore, and the
temporal focus is always shifted toward the input plane.

Furthermore, the amount of the displacement is fully con-
trolled by two parameters, and . On the one hand,
note that the modulus of the relative focal shift increases as

decreases. On the other hand, and taking into account
that the value of the time-bandwidth product for a Gaussian
envelope is 1/2, the pulse quality factor can be rewritten
as . In this way, it is possible to
infer that . As its spatial homologue , can be
estimated from experimental autocorrelation measurements,
even though these measurements do not give us access to the
real pulse shape, and then provides a practical measurement
of its quality, in comparison with that of the ideal Gaussian
envelope. We note from (6) that, for a fixed , the bigger
the deviation from the Gaussian envelope, the greater the shift
of the temporal focus. Finally, (6) shows that the compression
ratio of the pulse is directly related to the relative
focal shift. In fact, the bigger the focal shift, the lower the
compression ratio.

Now we apply our formulation for the evaluation of the focal
shift for two envelopes. The first case is devoted to the super-
Gaussian envelope family given by

(7)

Here the order is a natural number that fixes the de-
gree of rectangularity of the super-Gaussian function. Note
that corresponds to the Gaussian profile. We se-
lect the value of the peak amplitude so that in (3) is
unity. Furthermore, the intensity half-width is set as

, with the gamma
function. In this way, a fair comparison of compression of
signals with equal initial rms intensity width is considered. In
Fig. 1(a), we have plotted three elements of the above-described
family. After some algebraical operations, we find that the value
of the parameter is

(8)
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Fig. 1. (a) Plot of the pulse-envelope intensity at the input plane, and
(b) relative temporal focal shift as a function of the effective Fresnel number
for the above chirped pulses. Super-Gaussian profiles of order m = 1 (solid
curve),m = 3 (long-dashed curve), andm = 5 (short-dashed curve), together
with the sech-type amplitude profile (dotted curve) are dealt with.

From the above equation, we recognize that the quality factor
increases with the order , as is expected. In order to inves-
tigate the magnitude of the focal-shift effect predicted by (6),
in Fig. 1(b), we have plotted the relative temporal focal shift
against . In this plot, for , for

, and for . We recognize that a higher
focal shift, and thus, a lower compression ratio, is obtained as

increases.

We select as second example the sech-type amplitude profile

(9)

Its profile and the corresponding relative focal shift are also
plotted, in dotted curves, in Fig. 1. Again power and width nor-
malization are assumed. In this case, we obtain and,
thus, a nearly Gaussian behavior is achieved.

In summary, we have addressed in general terms the problem
of linearly chirped pulse compression through a parabolic
dispersive medium. We have expressed in an analytical manner
that this effect is solely controlled by two dimensionless pa-
rameters the effective temporal Fresnel number and the pulse
quality factor. These expressions are useful for applications
dealing with compression of arbitrary pulses.
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