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Abstract: Fractal zone plates (FZPs), i.e., zone plates with fractal structure, 
have been recently introduced in optics. These zone plates are distinguished 
by the fractal focusing structure they provide along the optical axis. In this 
paper we study the effects on this axial response of an important descriptor 
of fractals: the lacunarity. It is shown that this parameter drastically affects 
the profile of the irradiance response along the optical axis. In spite of this 
fact, the axial behavior always has the self-similarity characteristics of the 
FZP itself. 

©2004 Optical Society of America  

OCIS codes: (050.1940) diffraction; (050.1970) diffractive optics;  

References and links 

1. J. Ojeda-Castañeda and C. Gómez-Reino, Eds., Selected papers on zone plates (SPIE Optical Engineering 
Press, Washington, 1996). 

2. S. Wang, X. Zhang, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13, 59 (2002). 
3. Y Wang, W. Yun, and C. Jacobsen, “Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray 

imaging,” Nature 424, 50-53 (2003).  
4. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images 

by focusing soft x-rays with photon sieves,” Nature 414, 184-188 (2001). 
5. Q. Cao and J. Jahns, “Modified Fresnel zone plates that produce sharp Gaussian focal spots,” J. Opt. Soc. 

Am. A 20, 1576-1581 (2003). 
6. Q. Cao and J. Jahns, “Comprehensive focusing analysis of various Fresnel zone plates,” J. Opt. Soc. Am. A 

21, 561-571 (2004). 
7. G. Saavedra, W.D. Furlan, and J.A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28, 971-973 (2003). 
8. W.D. Furlan, G. Saavedra, and J.A. Monsoriu, “Fractal zone plates produce axial irradiance with fractal 

profile,” Opt.& Photon. News 28, 971-973 (2003). 
9. J.A. Davis, L. Ramirez, J.A. Rodrigo Martín-Romo, T. Alieva, and M.L. Calvo, “Focusing properties of 

fractal zone plates: experimental implementation with a liquid-crystal display,” Opt. Lett. 29, 1321-1323 
(2004). 

10. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982). 
11. A.D. Jaggard and D.L. Jaggard, “Cantor ring diffractals,” Opt. Commun. 158, 141–148 (1998). 
12. L. Zunino and M. Garavaglia, “Fraunhofer diffraction by Cantor fractals with variable lacunarity,” J. Mod. 

Opt. 50, 717-727 (2003). 
13. Y. Sakurada, J. Uozumi, and T Asakura, “Fresnel diffraction by 1-D regular fractals,” Pure Appl. Opt. 1, 29–

40 (1992). 
14. H. Melville and G. F. Milne, “Optical trapping of three-dimensional structures using dynamic holograms,” 

Opt. Express 11, 3562-3567 (2003). 

 

 

1. Introduction 

A renewed interest in zone plates [1] has been experienced during the last years because they 
are becoming key elements used to obtain images in several scientific and technological areas 
such as, THz tomography and soft X-ray microscopy [2-6]. With this motivation, we have 
recently proposed the fractal zone plates (FZPs) as new promising 2D photonic structures 
[7,8]. Lately, FZPs were implemented experimentally with a liquid crystal display by Davis et 
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al. [9]. A FZP can be thought as a conventional zone plate with certain missing zones. The 
resulting structure is characterized by its fractal profile along the square of the radial 
coordinate. The axial irradiance provided by a FZP when illuminated with a parallel 
wavefront presents multiple foci, the main lobe of which coincide with those of the associated 
conventional zone plate. However, the internal structure of each focus exhibits a characteristic 
fractal structure, reproducing the self-similarity of the originating FZP. In this way, synthesis 
of axial irradiances with fractal profile can be achieved easily given the simple theoretical 
relation between the transmittance of the FZP and their axial response [7].  

In this paper, we analyze the axial response of FZPs to a specific design parameter, 
frequently used as a measure of the “texture” of fractal structures: the lacunarity. In particular, 
we focus our attention on binary amplitude Cantor-like FZPs. First, some practical 
considerations about the design of this type of FZPs are investigated, taking into account the 
physical limits imposed by the different construction parameters. Finally, the axial irradiance 
provided by FZPs with variable lacunarity is numerically evaluated, and compared with the 
response of regular FZPs. 

2. Theory 

Let us consider the irradiance at a given point on the optical axis, provided by a rotationally 
invariant pupil with an amplitude transmittance p(r), illuminated by a monochromatic plane 
wave. Within the Fresnel approximation, this magnitude is given as a function of the axial 
distance from the pupil plane R, as 
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In Eq. (1), a is the maximum extent of the pupil function p(r) and λ is the wavelength of 
the light. For our purposes it is convenient to express the pupil transmittance as function of a 
new variable defined as  
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in such a way that )()( orpq =ς . By using the dimensionless reduced axial coordinate 

Rau λ22= , the irradiance along the optical axis can be expressed simply in terms of the 

Fourier transform of )(ςq as 
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Note that the reduced axial coordinate can also be expressed in terms of the Fresnel number F 
as 2Fu = .  

Now, if the pupil function )(ςq holds a fractal structure, it is well known that the Fourier 
transform preserves fractal properties [10], and then, it is direct to conclude that such pupil 
will provide irradiance along the optical axis also with a fractal profile.  

The comparison between a conventional zone plate and a FZP can be done taking into 
account the change of variables in Eq. (2). For a conventional zone plate the function )(ςq  

is a periodic function. In a similar way, a FZP results if )(ςq  represents any self-similar 
(fractal) 1-D function. In particular we will focus our attention in functions )(ςq constructed 
from different levels of a polyadic Cantor set.  
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3. Cantor-like FZP design 

The construction of a typical polyadic Cantor fractal set is shown in Fig. 1. The first step 
consists in defining a straight-line segment of unit length called initiator (stage S=0). Next, at 
stage S=1, the generator of the set is constructed by N (N=4 in the figure) non-overlapping 
copies of the initiator, each one with a scale γ<1, distributed in a particular way into the unit 
length segment. At the following stages of the construction of the set (S=2,3,...), the 
generation process is repeated over and over again for each segment in the previous stage. To 
characterize the resulting Cantor set, as well as many other fractal structures, one of the most 
frequently used descriptors is the fractal dimension, defined as 

 D=−ln(N)/ln(γ). (4) 

However, the fractal dimension does not uniquely define the fractal. In fact, for the most 
general case, it is necessary to introduce another parameter to specify the distribution of the N 
copies into the unit length segment at S=1. In other words, a parameter to specify the 
lacunarity (or “gapinness”) of the resulting structure is needed. In this work, as in previous 
papers dealing with Cantor fractals in optics [11,12], we used the width of outermost gap in 
the first stage, ε (see Fig. 1) for this purpose. 

The construction parameters of a FZP are linked to each other, and also they must satisfy 
certain constraints. On the one hand, the maximum value of the scale, γmax, depends on the 
value of N, i.e., 0≤ γmax

 ≤N−1. On the other hand, for each value of N and γ, there are two 
extreme values for ε. For the first, ε=0 , the result is the highest lacunar fractal, having the 
central gap very large while the outer ones become null. The other extreme value of ε is 
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In this case, a lower lacunar structure than in the previous case is obtained, since the central 
gap is missed. A particular value of ε that gives the lowest lacunar (or regular) fractal exists 
between zero and εmax. This value of ε, which is obtained by imposing bars and gaps to have 
the same size at the initiatior stage (as done in Ref. [7]), is given by 
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The influence of these construction parameters is shown in Fig. 2. FZPs are generated 
from Cantor bars like the one in the middle row of Fig. 1, i.e., N=4 and S=1, first by use of Eq. 
(2), and then by rotating the re-scaled bars around one of the extremes. FZPs for three 
different values of γ are obtained. The animations in this figure show the evolution of the FZP 
for values of ε ranging from zero to εmax. According to our previous discussion, it can be seen 
that by changing ε, different structures with the same fractal dimension can be obtained.  

 

 
 

Fig. 1. Schemes for the generation of the FZP binary function )(ςq for N=4 up to S=2.γ  is 

the scale factor and ε is the parameter that characterizes the lacunarity. 
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Fig. 2. FZPs generated with the following parameters: (a) γ=4/19, ε=1/19; (b) γ=1/7, ε=1/7; and 
(c) γ=1/16, ε=1/4. In all cases: N=4, S=1 and ε =εR. The animations fig2a.gif (332kB), Fig. 
2(b).gif (341kB) and Fig. 2(c).gif (323kB) show the evolution of the resulting FZPs for a 
variable lacunarity, ε varying from zero to εmax. Note that εmax is different in each case (see Eq. 
(5)), being: a) 3/38; b) 3/14; and c) 3/8. 

Summarizing, the number of stages, the lacunarity, the fractal dimension and the scale, are 
the independent variables in the construction of a FZP. Their influence on the axial irradiance 
will be presented in the next section. 

4. Fractal behavior of the axial irradiance  

Interesting features about the axial irradiance provided by regular FZPs were previously 
reported in Ref. [7]. In particular, we called axial scale property to the fact (theoretically 
supported by Eq. (3) that the axial irradance reproduces the self-similarity of the FZP. In this 
section we will analyze the influence of the lacunarity on this property. 

Since for the regular case the axial irradiance is a periodic function of the coordinate u 
with period up=1/γS [7], one way to observe the axial fractal behavior of the irradiance is by 

representing it as a function of the reduced axial coordinate as uuu S
p γ=/ . Figure 3(a) shows 

the FZP constructed with the same parameters as in Fig. 2(b), but for S=2. The normalized 
axial irradiances given by these two pupils (S=1 and S=2) for ε=εR are represented with 
different colors in Fig. 3(b). The self-similarity between these patterns can be clearly seen: the 
blue pattern is a magnified version of the red one, and the later is an envelope of the former. 
The animation in this figure shows the change the FZPs experiences for different values of the 
lacunarity (ε ranging from ε=0 to εmax), and at the same time, the evolution of the axial 
irradiance provided by this pupils. It can be seen that the optical irradiance produced by the 
FZPs is highly influenced by the lacunarity.  

 

 
 

Fig. 3. (a) FZP generated with the following parameters: γ=1/7, ε=εR=1/7, N=4, and S=2 
(compare it with Fig. 2b). (b) Normalized axial irradiances obtained with the FZP in a) and 
with the FZP in Fig. 2b). The animation Fig. 3.gif (905kB) shows the evolution of the FZP for 
a variable lacunarity, ε varying from zero to εmax and the corresponding axial irradiances for the 
above mentioned FZPs. 
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Nevertheless, it is clear that in all cases the irradiance for S=2 is still modulated by the 
irradiance for S=1. Although it seems that the self-similarity observed for the regular FZP 
(ε=εR) is not supported by other values of ε,  this effect is an artifact due to the axial scale 
used in this figure. Another interesting result which is masked in Fig. 3 by the use of the 
normalized axial coordinate is the fact that there exists certain axial positions with zero axial 
irradiance for all values of ε. These effects can be better seen in Fig.4 .  
 

 
 

Fig. 4. Gray–scale representation of the axial irradiance (in dB) plotted as a function of the 
normalized axial coordinate and the lacunarity (twist plots). Left and right correspond to the 
pupils shown in Fig. 2  and the corresponding ones with S=2, respectively. 

 
In this figure the axial coordinate is extended to cover several periods of the regular case. The 
normalized axial irradiances (as a function of u) are represented as gray levels for six families 
of FZPs: the three of Fig. 2 corresponding to S=1 (left) and other three with the same 
parameters but for S=2 (right). These irradiances were computed for the whole range of ε and 
then stacked sequentially to obtain these 2D displays (coined as twist plots [11]). The first 
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common aspect to be noted in all pictures are the vertical dark bands corresponding to axial 
nulls whose positions remain invariant with the lacunarity. These nulls are obtained at values 
u= i/γS (for i=1, 2, ...), and are caused by the destructive axial interference between all points 
inside each individual ring with the same scale factor γ. In a similar way, the other nulls in this 
figure can be understood as multiple cross-interferences between different rings of the FZP. 
Fig. 4 also shows that the re-scaled data in the stage S=1 forms an envelope for the data at the 
S=2 and both structures are self-similar for any value of ε. This result shows that FZPs have 
self-similar properties similar to those reported for other Cantor-related structures [11,12]. 

To analyze how the axial irradiance changes with the lacunarity we used a generalization 
of the correlation coefficient defined by Sakurada et al. [13] for measuring the self-similarity. 
In our case the axial irradiances for a variable lacunarity were correlated with the same 
function computed for ε=εR , since this particular value of ε gives the lowest lacunar FZP. 
Thus, the correlation coefficient we used is given by 
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From its definition, the function C(ε) is expected to be a continuous function, having an 
absolute maximum value at ε =εR. Since the infinite limits in the integrations in Eq. (7) would 
pose difficulties to the accurate numerical evaluation of C(ε), a more suitable expression can 
be obtained by using Eq. (3) and the Rayleigh’s theorem. In this way, C(ε) can be written as 
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With this definition the integrals in Eq. (8) are compact supported and the degree of 
similarity between axial irradiances can be more precisely numerically evaluated. Moreover, 
this definition is instructive to see how the changes in the FZP produced by the lacunarity are 
correlated with the axial responses. In Fig. 5 we have represented the autocorrelations in Eq. 
(8) for the FZPs of Fig. 2. The black and red lines represent the correlation for the regular 
case, and for ε=εmax, respectively. The graphs in the right column show the variation of the 
correlation coefficient for the whole range of ε. As can be seen the maximum value is attained 
for ε=εR . Note the different scale in the three figures, due to the range of available values of ε. 
The animations in this figure show the evolution of the correlation coefficient as a function of 
ε and at the same time the value of the autocorrelations of the product in Eq. (8). The function 
C(ε) was also computed for different values of S. The result is shown in Fig. 6. Compared 
with the result obtained for S=1 in Fig. 5, the correlation coefficient for S=2 present a higher 
number of maxima and minima and seems to be a modulated version of the previous stage. 
Interestingly, it seems that, to a certain extent, the function C(ε) has also a fractal behavior, 
though limited for the range of ε available for each value of γ. This last result is a new 
property of FZPs. 
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Fig. 5. Left: Autocorrelation function ( ) ( )ςq ςq
εε

⊗  for the FZPs shown in Fig 2, for ε=εR 

(black) and for ε=εmax (red). Right: C(ε) for the same FZPs. The animations Fig. 5(a).gif 
(311kB), Fig. 5(b).gif (498kB) and Fig. 5(c).gif (519kB), show the evolution of these functions 
for a variable ε. 

 

 
Fig. 6. C(ε) for the pupils shown in Fig. 2 (red) and the corresponding ones with S=2 (blue). 

5 Conclusions 

FZPs with variable lacunarity has been extensively analyzed. The construction restrictions and 
the interrelations between the different parameters have been investigated. As a result, it was 
shown that the lacunarity has a dramatic effect on the axial irradiance provided by different 
FZPs with the same fractal dimension, but the essential aspects of the self-similarity are 
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preserved. A new parameter that correlates the axial irradiances given by FZPs with different 
lacunarity was proposed and its fractal behavior was reported. 

The present study brings new lights on the powerful potential applications of FZPs, 
especially in scientific and technological areas where conventional zone plates have been 
successfully applied. Particularly, recent proposals of optical tweezers use phase filters to 
facilitate the trapping of particles in three-dimensional structures [14], spatial light modulators 
can be employed to display tunable FZPs producing focal spots that could be useful for this 
purposes. On the other hand, the non-uniform distribution of FZPs focal points along the 
optical axis could be exploited in the design of multifocal contact lenses for the correction of 
presbyopia. In this case a mechanism to control the diffraction efficiency of the FZP should be 
first developed. Currently we are investigating several properties of non-binary FZPs like the 
influence of optical aberrations, and polychromatic illumination. In particular, the attributes of 
rotationally non-symmetric FZPs, as elliptical or vortex FZPs, will be published in a 
forthcoming paper. 
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