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ABSTRACT 

One of the main challenges in integral imaging is to overcome the limited depth of field. Although it is widely assumed 
that such limitation is mainly imposed by diffraction due to lenslet imaging, we show that the most restricting factor is 
the pixelated structure of the sensor (CCD). In this context, we take profit from these sensor constraints and demon-
strate that by proper binary amplitude modulation of the pickup microlenses, the depth of field can be substantially im-
proved with no deterioration of lateral resolution. 
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1.  INTRODUCTION 

Currently, much visual information is presented to users through computer monitors, TV screens, or even through cellu-
lar-phone or PDA screens. The displayed images can have entertainment or information values, or even be aimed at the 
diffusion of research results [1]. The information society increasingly demands the display of not only plane images but 
also of three-dimensional (3D) images, or even movies [2-5], with continuous perspective information. Although the 
search for optimum 3D imaging and display techniques has been the subject of research from much more than for a 
century [6], it has been in the last several years when technology is approaching the level required for realization of 3D 
imaging systems. The so-called integral imaging (InI), which is a 3D imaging technique specially suited for the above 
requirements, works with incoherent light, and provides with auto-stereoscopic images without the help of any special 
glasses. In an InI system, an array of microlenses generates, onto a sensor such as a CCD, a collection of plane elemen-
tal images. Each elemental image has a different perspective of the 3D object. Therefore, the CCD records the projec-
tions of the object. In the reconstruction stage, the recorded images are displayed by an optical device, such as a LCD 
monitor, placed in front of another microlens array. This setup provides the observer with a reconstructed 3D image 
with full paralax. Integral imaging was first proposed by Lippmann [7], and some relevant work was done in the mean-
time [8-12]. The interest in InI has been resurrected recently because of its application to 3D TV and display [13]. 
Since its rebirth, InI has overcome many of its challenges. Specifically, it is remarkable that a simple technique for the 
pseudoscopic to orthoscopic conversion was developed [14]. Some methods were proposed to overcome the limits in 
lateral resolution imposed by the CCD [15-17], or by the microlens array [18,19]. Other challenge satisfactorily faced is 
of the limitation in viewing area [22]. Apart from this engineering work, some purely theoretical work has been also 
performed to characterize the response in resolution of InI systems [23,24], or the viewing parameters in the display 
stage [25,26]. 
At present 3D InI systems still face some problems. One issue is the limited depth of field (DOF). In a typical scene 
objects exist at different depth positions. Since only a single plane is used to capture the images, it is not possible for all 
objects to be in focus. Then blurred images of out-of-focus objects, or part of objects, are obtained. Although the DOF 
of integral imaging systems is influenced by many parameters (related with both the capture and the display systems), it 
is apparent that to display a clear integral image of an axially elongated 3D object it is essential to capture sharp 2D 
elemental images of it. For this reason, the bottleneck of the DOF in integral imaging is the limited depth of focus of 
the microlens array used in the pickup stage. One could overcome this problem by reducing the numerical aperture 
(NA) of the lenses. However, such a reduction would produce, as a collateral effect, a worsening of lateral resolution of 
capture stage, and therefore of spatial resolution of the overall integral imaging system. In the past few years, some new 
alternative techniques have been proposed to improve the depth of field of integral imaging systems. These methods are 
based on the synthesis of real and virtual image fields [27], or on the use of lenses with non-uniform focal lengths and 
aperture sizes [28,29]. 
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In this paper we propose a new method for producing a significant enlargement of the depth of field of the integral-
imaging pickup system. This enlargement is not accompanied by a deterioration of spatial resolution. The method, 
whose main feature is its simplicity, is based on an adequate binary modulation of the microlenses amplitude transmit-
tance [30]. To present our technique we start by carrying out a theoretical analysis of the pickup stage of integral imag-
ing systems, in terms of the scalar diffraction theory. This analysis explicitly takes into account the fact that the object 
is a surface object. This assumption allows us to develop a set of equations, which constitutes a strict description of the 
diffractive behavior of the pickup of an integral imaging system. This analysis shows us that, conversely to what is gen-
erally assumed, integral imaging systems are not linear and shift invariant, and therefore it is not valid, stricto senso, to 
define neither a point spread function (PSF) nor an optical transfer function (OTF). In a second step, we design an ade-
quate amplitude modulator, which should be applied to any element of the microlens array. Later, we explain how to 
overcome the sensor constraints. In fact we take advantages of them to propose a technique for important enlargement 
of the DOF [31]. We have performed numerical simulations with computer-synthesized objects, to show that the DOF 
of focus is significantly improved. 

2.  THEORETICAL ANALYSIS OF THE CAPTURE STAGE 

To discuss the method we start by describing the capture stage from the point of view of diffraction theory. Let us re-
mark that since the microlens arrays generally used in typical InI experiments are of low numerical aperture 
( 1.0≈NA ), the analysis can be accurately performed within the frame of the paraxial scalar diffraction theory. In Fig. 1 
we show a scheme of the capture setup. Spatial coordinates are denoted ),( yx=x  and z  for directions transverse and 
parallel to the system main optical axis. We consider a surface object under spatially incoherent illumination. For sim-
plicity we assume quasi-monochromatic illumination with mean wavelength λ . Light emitted by the surface object is 
collected by the microlens array to form a collection of 2D elemental aerial images. The images are formed in the so-
called aerial pickup plane, which is set at a distance g from the microlens array. The reference and the aerial pickup 
plane are conjugated through the microlenses, so that distances a and g are related by the lens law 1/a+1/g−1/f=0. Any 
elemental image has a different perspective of the surface object. In our scheme a relay system, composed by a field 
lens and a camera lens, is used to image the aerial images into the pickup device (usually a CCD camera). The lateral 
magnification of the relay system is adjusted so that the size of the elemental-images collection array matches the CCD. 

 

Figure 1.  Scheme, not to scale, of the capture setup of a 3D InI system. Object points out of reference plane produce 
blurred images in the CCD. In the relay system the field lens collects the rays from the outer microlenses; the camera 
lens projects the images onto the CCD. 

The intensity distribution of incoherent light scattered by the object can be represented by the real and positive function 

( ) ( ) ( )( ) ,, xxx fzRzO −δ=  (1) 
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where function )(xR  accounts for the object intensity reflectivity, whereas 0)( =− zf x  is the function that describes 
the surface. 
We consider now the light scattered at an arbitrary point ),( zx  of the surface object. It is straightforward, by applica-
tion in cascade of paraxial scalar diffraction equations, to find that the intensity at a given point )','( yx=x' of the aerial 
pickup plane is given by 
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where m=(m,n) accounts for the microlenses indexes in the (x,y) directions, and p stands for the constant pitch of the 
microlens array. In Eq. (2) Mz=−g/(a−z) is a magnification factor that depends on the depth coordinate z. The so-called 
generalized pupil function is: 
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This function accounts for the microlenses pupil function, ( )oxp , together with the phase modulation due to defocus 
errors. It is important to remark that, in principle, the matter of interest of our research is not the intensity distribution at 
the aerial pickup plane, but the distribution at the pickup-device plane. Note however that since such a distribution is 
simply a uniformly scaled version of the one in Eq. (2), it is correct to base our study on such an equation. 
Assuming non significant overlapping between the elemental diffraction spots provided by the different microlenses, 
Eq. (2) can be rewritten in quite good approximation as the 2D convolution between the, properly scaled, 2D Fourier 
transform of ( )oxzP  and a sampling function, that is 

( ) ( )[ ]{ } .1
~

,;
2

∑ +−−δ⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

=λ

m

xmx'x'xx' zz MMp
g

zH zP  (4) 

Let us consider now the overall light proceeding from the surface object. In this case the intensity distribution in the 
pickup plane is obtained as a weighted superposition of the diffraction spots provided by any point of the surface object, 
namely 

( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫ ==−δ= λλλ xxxx'xxxx'xxx' 22 ,;,; dfzHRdzdzHfzRI  (5) 

Note that function )(•λH  explicitly depends on xx' zM− , that is:  

( ) ( ) ( )zMzMHzH zz ;,0;,; xx'xx'xx' −≡−= λλλ H . (6) 

Then, Eq. (5) can be rewritten as 

( ) ( ) ( )( ) .; 2∫ =−= λλ xxxx'xx' dfzMRI zH  (7) 

Although Eq. (7) seems to represent a 2D convolution, it does not. This is because function ( )oxzP  has a strong de-
pendence on the axial position of the corresponding surface points. In other words, function )(•λH  is different for dif-
ferent values of z. Besides, factor Mz also depends on z, and therefore parts of the object at different depth are magnified 
in different way. Consequently, the impulse response is different at any depth. This fact implies that, the pickup system 
is not linear and shift invariant. Therefore, neither the PSF nor the OTF could be rigorously defined. 
As seen above, the acquired image is composed by an array of elemental images of the surface object, each one ob-
tained from a different viewpoint. Let us now focus our attention into the elemental image produced by one of the mi-
crolenses, for example the one in the center of the microlens array (this selection does not subtract any generality from 
our study). The intensity distribution of such an elemental image is given by 
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We assume that the pupil of each microlens is a circle with diameter φ. In such a case, it is convenient to express Eq. (9) 
in cylindrical coordinates as follows 

( ) ( ) .2
)(

exp,
2

oo
o

o
2

oo
o ∫

φ

λ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

π
⎭
⎬
⎫

⎩
⎨
⎧

−λ
π

=
/2

0

drr
g
rr

Jr
zaa

zirpzrH  (10) 

3.  THE BINARY AMPLITUDE MODULATION 

In Fig. 2(a) we have represented some cross-sections of Eq. (10). The parameters for the calculation were: φ=2.0 mm, 
f=5.0 mm, λ=0.5 μm, and a=100 mm. Note that, due to the low value for the lens NA, the axial extent of o

λH  is much 
higher than the lateral extent. In the section z=0 we can recognize the Airy disk pattern, whose extent determines the 
lateral resolution of the system. We find that in this case the resolution limit, as defined by Rayleigh, is of 1.61 μm, if 
measured in the pickup plane, or of 30.6 μm if evaluated in the reference object plane. The DOF is usually evaluated by 
means of the so-called Rayleigh range, which is defined as the extent of the axial interval in which ),0(o zλH  is higher 

than 2/2  times its maximum value [32]. In this case, the Rayleigh range is mmzmm 1.33.3 <<− . Let us remark 
that, as we see in the following section, the pixel size of the capture device is a factor that strongly influences the DOF 
and the resolution. However, in our calculations at this stage we have considered that the pixels are sufficiently fine. 

 

Figure 2.  Cross sections of function ( )z,x0
λH  corresponding to: (a) the nonmodulated lenses;  and (b) the amplitude-

modulated lenses. The filters consist in an opaque circular mask of diameter δφ  (with 2/1=δ ) centered just be-
hind each microlens. 
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To illustrate the limitations in DOF of an integral imaging system, we have performed a numerical experiment in which 
we obtain the elemental images of a computer-synthesized object. Since the aim of the experiment is to appreciate the 
improvement in DOF, we have selected as the object the Snellen E tumbling chart, which is usually used to grade reso-
lution and defocus errors in visual optics. In the experiment the E patterns are positioned side by side and are longitudi-
nally located at z1=-10.0 mm, z2=-5.0 mm, z3=+4.6 mm, z4=+8.3 mm, respectively, as depicted in Fig. 3. Note that the 
axial positions are not symmetric about the reference plane, but corresponds to the same amount of defocus as defined 
in terms of the well-known defocus coefficient )(22

20 zaaz −λφ=ω  [33]. The elemental images were calculated ac-
cording to Eq. (7). In Fig. 4(a) we show the central element m=(0,0). It is clear from the figure that the images of the E 
patterns in z1 and z4 are highly blurred. Let us remark that, since the imaging system is not telecentric [34], the images 
corresponding to planes with the same modulus of 20ω  but different sign are different. This is due to the different scale 
of defocused images. Due to this effect, the elemental image of the E patterns located at z1 is much more blurred than 
the elemental image corresponding to the E pattern at z4. It is noticeable that in the case of the pattern at z1 one can 
hardly distinguish the original orientation of the E in the elemental image. 

 

Figure 3.  Scheme, not to scale, of the integral imaging numerical experiment. The size of the legs of the charts used 
in our experiments is mμ=Δ 51 , which is about two times the Rayleigh resolution limit. 

 

Figure 4.  2D central elemental images captured with the microlens array. We do not show the whole field of view, 
but only a portion of mm4.0mm4.0 ×  centered at the corresponding optical axis. (a) Image obtained with the non-
modulated microlenses; (b) Image obtained with the amplitude-modulated microlenses.  



 

Proc. of SPIE Vol. 5986  598604-6 

The problem of the limited DOF can be overcome by use of amplitude-modulation techniques. Specifically we propose 
the use of binary amplitude modulators. Such kind of modulators have been successfully applied to improve the per-
formance of other 3D imaging techniques such as confocal microscopy [35] or multiphoton scanning microscopy [36]. 
The technique consists in obscuring the central part of each microlens. Such an obscuration allows the secondary Huy-
gens wavelets proceeding from the outer part of the lenses to interfere constructively in an enlarged axial range. Then 
by simply placing an opaque circular mask of diameter D=δφ (with 0<δ<1) just behind each microlens, one can in-
crease the focal depth of the microlens array. It is known that the higher the value of the obscuration ratio δ, the broader 
the axial intensity spot. In an ideal case one could obtain infinite depth of focus by approaching the value of δ to the 
unity. However, such a situation is not convenient from an experimental point of view, because the higher the value of 
δ the smaller the light efficiency of the system. On the other hand, if one works with only the outermost part of the 
lenses, the optical aberrations of the system dramatically increase. For these reasons, we propose to use the binary 
modulator of obscuration ratio 2/2=δ . This modulator has a light efficiency of 50%, and doubles the depth of focus 
of the system. 
In Fig. 2(b), we have represented some cross-sections of Eq. (10), for the case of amplitude modulation with obscura-
tion ratio 2/2=δ . In this case, the Rayleigh resolution limit is 22.3 μm (as evaluated in the reference plane), 
whereas the DOF is -6.8 mm< z <+6.0 mm. If we compare these results with the ones obtained with the non-modulated 
setup (see Fig. 2(a)) we find that the DOF has been doubled, and the 2D density of resolved points has been increased 
by a factor of 1.85. Also in this case we have performed the numerical experiment with the same Snellen E tumbling 
chart as in the previous section. The central elemental image, m=(0,0), is shown in Fig. 4(b). One observes the notice-
able improvement in DOF provided by the amplitude modulation phase elements method. Note on the other hand, that 
the images of objects at 2z  and 3z  are slightly more blurred than the ones obtained with the non-modulated architec-
ture. This fact seems to contradict the statement that the binary modulation improves the lateral resolution, as defined 
by Rayleigh, for objects placed at any depth z. Take into account, however, that the Rayleigh resolution limit is defined 
for point objects, and therefore it does not hold in case of more elaborated objects. In such a case, the use of binary am-
plitude modulation improves lateral resolution in a very large range of depth positions, but produces a slight worsening 
for low values of depth coordinate z. 

4. THE INFLUENCE OF THE DETECTOR PIXEL SIZE 

Let us revisit at this point the concepts of lateral resolution and DOF. The resolution of an imaging system evaluates its 
capacity for producing sharp images of the finest features of the object, when it is in focus. In case of diffraction-limited 
imaging systems, resolution is usually evaluated in terms of the Rayleigh criterion. According to it, the resolution of the 
pickup system under study is determined by the radius of the first zero ring of the Airy disk, ( )0,x0

λH . Note that the 
central lobe contains 84% of the energy in the Airy disk. On the other hand, The DOF of an imaging system is the dis-
tance by which the object may be axially shifted before an unacceptable blur is produced. In diffraction-limited imaging 
systems, the DOF is usually evaluated in terms of the so-called Rayleigh range: the axial distance from the in-focus 
plane to the point that produces an spot whose radius has increased by a factor 21/2. The evaluation of the radii of the 
spots produced by out-of-focus points (z≠0) is not as simple as in the in-focus case. This is because as z increases the 
spot spreads and neither a central lobe nor zero ring are recognized. In this case we define the defocused-spot diameter 
as the one of a circle that encircles 84% of the overall pattern energy. In mathematical terms such diameter, D(z), is the 
one which solves the equation 

( ) ( )∫∫
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In Fig. 5(b) we represent, with thick line, the defocused-spot diameter for different values of distance z. We conclude, 
from the figure, that if only the limits imposed by diffraction are considered, the resolution limit of the pickup system 
under study is of is of 3.33 μm, measured in the aerial pickup plane, and the DOF is, for positive values of z, of 
+8.5 mm.  
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(a)       (b)  

Figure 5.  (a) Grey-scale representation of Eq. 10. Any cross-sections correspond to the spot produced by an object 
point at a depth z. White lines delimit the back-projected pixel size. The effect of defocus is much more appreciable 
for positive values of z; (b) Spot diameter for different values of the fill factor. The black thick line is used to mark 
the back-projected pixel size. 

To appreciate the influence of pixelation on the lateral resolution at any depth position of the object, we assumed that 
the CCD has 1024x768 square pixels and the array has 34x25 microlenses. Therefore each elemental image has 30x30 
pixels. In Fig. 5(a), we have drawn a pair of horizontal lines separated by a distance that equals the back projection of 
the pixel size onto the aerial pickup plane. When the intensity spot is smaller than the (back projected) pixel size, the 
resolution limit is imposed by the pixelated structure of the CCD. On the contrary, when the intensity spot is bigger 
than the pixel size, the resolution limit is imposed by diffraction. In Fig. 5(b) we have plotted a horizontal thick line that 
corresponds to the back-projected pixel size. From this figure, some important properties of the captured elemental im-
ages can be deduced: (a) The resolution limit for objects at z=0 is determined by the CCD pixel size. This limit is much 
higher than the one imposed by diffraction; (b) For objects in a large range of axial positions z, the resolution limit is 
still imposed by the CCD. Therefore this limit is the same as for objects at z=0; (c) For objects beyond the above range, 
the resolution is imposed by the spot diameter, which rapidly increases as z increases. (d) The range of axial positions in 
which the resolution limit does not change, defines now the DOF of the capture setup of an InI system. 
Then we can conclude that, contrarily to what is commonly assumed, in a large rage of depth positions the lateral reso-
lution of the capture setup is determined not by diffraction but by the CCD. This fact provides us with one additional 
degree of freedom in the design of the optimum pickup. Specifically, one can safely increase the DOF by use of tech-
niques that in diffraction-limited systems would deteriorate the lateral resolution at z=0. In this sense, one can decrease 
the lenslets fill factor, defined as the quotient between the diameter of the microlenses, φ, and the pitch, p. It is known 
that decreasing the lenslets fill factor, produces the increase of the spot diameter at z=0, but a significant reduction for 
larger values of z. Reducing the fill factor does not affect to the lateral resolution at z=0 (which is determined by the 
CCD), but importantly increases the DOF. In Fig. 5(b), we have represented the evolution of the spot diameter for dif-
ferent values of the fill factor. All the cases represented have the same lateral resolution at low values for z. However, 

       

Figure 6.  (a) Synthetic object; (b) 2D elemental images captured from 49 views; (c) Enlarged view of the cen-
tral image. The object was placed at z=0 and the  fill factor was set at φ/p=1.0 
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for example, the DOF obtained with φ/p=0.5 is 40% longer than the one obtained with φ/p=1.0. At z=54 mm the resolu-
tion limit obtained with φ/p=0.5 is half of the one obtained with a fill factor of 1. 
To further illustrate our proposal, we have performed a numerical imaging experiment with a computer-generated syn-
thetic object, see Fig 6(a). In the first step, we have calculated the elemental images assuming that the object was placed 
at z=0 and the fill factor is φ/p=1.0. The images captured from 49 different views are shown in Fig. 6(b). In Fig. 6(c) we 
show an enlarged image of the central element m=(0,0). Next, in Fig. 7, we show the elemental images obtained with 
the fill factor φ/p=0.5. There are no differences in resolution between this image and the one obtained with φ/p=1.0. 

    

Figure 7.  (a) 2D elemental images of the object captured from 49 different views; (b) Enlarged view of the central 
image. The object was placed at z=0 and the fill factor was set at φ/p=0.5. 

In Fig. 8 we show the of the central elemental image obtained when the synthetic object is axially displaced to 
z=67.5 mm. Note that the magnification factor Mz increases with z. It is apparent that for large values of z the resolution 
obtained with φ/p=0.5 is much better than the resolution obtained with of φ/p=1.0. 

 

Figure 8.  Central elemental image as the object is displaced from z=0 to z=67.5 mm. Left-hand image corresponds 
to φ/p=0.5. Right-hand one to φ/p=1.0. 

5.  CONCLUSIONS 

We present a method for improvement of depth of field of 3D integral imaging with no deterioration of lateral resolu-
tion. The technique takes profit from the influence of pixelation on resolution of defocused objects. By proper binary 
amplitude modulation of the microlenses one can substantially increase the depth of field. The technique slightly re-
duces the light efficiency. Our detailed analysis has been based on the scalar diffraction theory. The conclusions of it 
could be heuristically understood in terms of simple ray-tracing arguments. However, such arguments would not permit 
to obtain precise values neither for the evolution of the lateral resolution, for the range of axial positions of the 3D ob-
ject in which the lateral resolution is imposed by the detector pixel size. Moreover, the ray-tracing model would not 
allow analyzing the case of other more elaborate pupil functions as, for example, the annular pupils or the gaussian 
ones. 



 

Proc. of SPIE Vol. 5986  598604-9 

ACKNOWLEDGEMENTS 

This work has been funded in part by the Plan Nacional I+D+I (grant DPI2003-4698), Ministerio de Ciencia y Tec-
nología, Spain. We also acknowledge the financial support from the Generalitat Valenciana, Spain (grant gru-
pos03/227). 

REFERENCES 

1. J.-S. Jang and B. Javidi, "Three-dimensional integral imaging of micro-objects," Opt. Lett. 29, 1230-1232 (2004). 
2. H. Liao, M. Iwahara, N. Hata and T. Dohi, "High-quality integral videography using multiprojector," Opt. Express 

12, 1067-1076 (2004). 
3. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, 

WA, 2001). 
4. D. H. McMahon and H. J. Caulfield, "A technique for producing wide-angle holographic displays," Appl. Opt. 9, 

91-96 (1970). 
5. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-

optic holography," Proc. of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003, 
vol. 1 (IEEE, Piscataway, NJ, 2003) pp. 172-173 

6. T. Okoshi, "Three-dimensional displays," Proc. IEEE 68, 548-564 (1980). 
7. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821-825 (1908). 
8. H. E. Ives, "Optical properties of a Lippmann lenticuled sheet," J. Opt. Soc. Am. 21, 171-176 (1931). 
9. C. B. Burckhardt, "Optimum parameters and resolution limitation of integral photography," J. Opt. Soc. Am. 58, 

71-76 (1968). 
10. T. Okoshi, "Optimum design and depth resolution of lens-shet and projection type three-dimensional displays," 

Appl. Opt. 10, 2284-2291 (1971). 
11. N. Davies, M. McCormick and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 

27, 4520-4528 (1988). 
12. N. Davies, M. McCormick and M. Brewin, "Design and analysis of an image transfer system usig microlens ar-

ray," Opt. Eng. 33, 3624-3633 (1994). 
13. F. Okano, H. Hoshino, J. Arai and I. Yayuma, "Real time pickup method for a three-dimensional image based on 

integral photography," Appl. Opt. 36, 1598-1603 (1997). 
14. J. Arai, F. Okano, H. Hoshino and I. Yuyama, "Gradient-index lens-array method based on real-time integral pho-

tography for three-dimensional images," Appl. Opt. 37, 2034-2045 (1998). 
15. L. Erdmann and K. J. Gabriel, "High resolution digital photography by use of a scanning microlens array," Appl. 

Opt. 40, 5592-5599 (2001). 
16. S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computa-

tional integral imaging," Opt. Express 11, 3528-3541 (2003). 
17. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed com-

putational integral imaging”, Appl. Opt. 42, 7036-7042 (2003). 
18. J.-S. Jang and B. Javidi, "Three-dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002). 
19. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstation-

ary micro-optics," Opt. Lett. 27, 324-326 (2002). 
20. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of 

lenslets with nonuniform focal lengths and aperture sizes," Opt. Lett. 28, 1924-1926 (2003). 
21. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of 

field by use of amplitude modulated microlens array”, Appl. Opt. (in press). 
22. H. Choi, S.-W. Min, S. Jung, J.-H. Park and B. Lee, "Multiple-viewing-zone integral imaging using dynamic bar-

rier array for three-dimensional displays," Opt. Express 11, 927-932 (2003). 



 

Proc. of SPIE Vol. 5986  598604-10 

23. J. Arai, H. Hoshino, M. Okui and F. Okano, "Effects on the resolution characteristics of integral photography," J. 
Opt. Soc. Am. 20, 996-1004 (2003). 

24. H. Hoshino, F. Okano, H. Isono and I. Yuyama, "Analysis of resolution limitation of integral photography," J. Opt. 
Soc. Am. A 15, 2059-2065 (1998). 

25. J.-H. Park, S.-W. Min, S. Jung and B. Lee, "Analysis of viewing parameters for two display methods based on 
integral photography," Appl. Opt. 40, 5217-5232 (2001). 

26. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca and G. Saavedra, "Multifacet structure of observed recon-
structed integral images," J. Opt. Soc. Am. A 22, 597-603 (2005). 

27. J.-S. Jang, F. Jin, and B. Javidi, "Three-dimensional integral imaging with large depth of focus by use of real and 
virtual image fields," Opt. Lett. 28, 1421-1423 (2003). 

28. B. Lee, S.-W. Min, S. Jung, and J.-H. Park, “Computer generated dynamic three-dimensional display using inte-
gral photography adopting Fesnel lensens,” Proc. SPIE 4471, 9-17 (2001). 

29. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of 
lenslets with nonuniform focal lengths and aperture sizes," Opt. Lett. 28, 1924-1926 (2003). 

30. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca and G. Saavedra, "Integral imaging with improved depth of 
field by use of amplitude-modulated microlens array," Appl. Opt. 45, 5806-5813 (2004). 

31. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral and B. Javidi, "Enhanced depth of field integral imaging 
with sensor resolution constraints," Opt. Express 12, 5237-5242 (2004). 

32. A. E. Siegman, Lasers (Univ. Science, Saulito, CA 1986). 
33. A. Stokseth, "Properties of a Defocused Optical System," J. Opt. Soc. Am. 59, 1314-1321 (1969). 
34. C. J. Zapata-Rodríguez, P. Andrés, M. Martínez-Corral, and L. Muñoz-Escrivá, "Gaussian imaging transformation 

for the paraxial Debye formulation of the focal region in a low-Fresnel-number optical system," J. Opt. Soc. Am. 
A 17, 1185-1191 (2000). 

35. M. Martínez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical section-
ing fluorescence microscopy by shaded-ring filters,” Opt. Express 11, 1740-1745 (2003). 

36. C. Ibáñez-López, G. Saavedra, G. Boyer and M. Martínez-Corral, "Quasi-isotropic 3-D resolution in two-photon 
scanning microscopy," Opt. Express 12, 6168-6174 (2005). 

 


