
Research Signpost 
37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India 
 

 
 
 
 
 
Recent Res. Devel. Optics, 5(2005): ISBN: 81-308-0004-7 

 Focusing light with fractal zone 
plates 

 

 Juan A. Monsoriu1, Walter D. Furlan2 and Genaro Saavedra2  
1Departamento de Física Aplicada, Universidad Politécnica de Valencia 
E-46022 Valencia, Spain; 2Departamento de Óptica, Universitat de València 
E-46100 Burjassot, Spain 

 
 

 

 
 

Abstract 
     A detailed description of the design procedure of 

fractal zone plates (FZPs), i.e., zone plates with 
fractal structure, is given. The focusing properties of 
these elements are studied analytically and compared 
with conventional Fresnel zone plates. Some 
distinctive aspects of the new kind of zone plates are 
outlined. It is shown that the axial irradiance 
exhibited by the FZP has self-similarity properties 
that can be correlated to those of the diffracting 
aperture. In addition, the impact on the axial 
irradiance produced by the lacunarity of a general 
FZP is investigated. Several numerical  examples  that 
illustrate these features are presented. 
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1. Introduction 
 A renewed interest in zone plates [1] has been experienced during the last 
years because they are becoming key elements in obtaining images in several 
scientific and technological areas such as THz tomography and soft X-ray 
microscopy [2-6]. With this motivation, we have recently proposed fractal 
zone plates (FZPs) as new promising 2D photonic structures [7-10]. Under 
certain circumstances, a FZP can be thought as a conventional zone plate with 
certain missing zones. The resulting structure is characterized by its fractal 
profile along the square of the radial coordinate. 
 In this text we show that the axial irradiance provided by a FZP when 
illuminated with a parallel wavefront presents multiple foci, the main lobe of 
which coincide with those of the associated conventional zone plate. The 
internal structure of each focus exhibits a characteristic fractal structure, 
reproducing the self-similarity of the originating FZP. In addition, we analyze 
the axial response of FZPs to a specific design parameter, frequently used as a 
measure of the “texture” of fractal structures: the lacunarity. Some practical 
considerations about the design of this general type of FZPs are investigated, 
taking into account the physical limits imposed by the different construction 
parameters. The axial irradiance provided by FZPs with variable lacunarity is 
numerically evaluated, and compared with the response of regular FZPs. 
Finally, since a simple theoretical relation is found between the transmittance 
of the FZP and their axial response, synthesis of axial irradiances with fractal 
profile can be easily achieved.  
 
2. Theory 
 Let us start by considering the irradiance at a given point on the optical 
axis, provided by a rotationally invariant pupil function described by p(r), 
illuminated by a monochromatic plane wave. Within the Fresnel 
approximation, this magnitude is given as a function of the axial distance from 
the pupil plane z, as 
 

                                        
(1) 

 
In Eq. (1), a is the maximum extent of the pupil function, and λ is the 
wavelength of the light. For our purposes it is convenient to express the pupil 
transmittance as function of a new variable defined as  
 

                                                                                              
(2)

 



Fractal plates 3 

in such a way that q(ς)=p(ro). By using the dimensionless axial coordinate        
u = a2/2λz, the irradiance along the optical axis can be now expressed as 
 

                                      
(3)

 
 
From this result it is straightforward to note that the behaviour of Io(u) is 
basically governed by the square modulus of the Fourier transform of q(ς). 
 Let us now consider a pupil function q(ς) that holds a fractal structure. 
Thus, from well-known properties of fractals and their Fourier transforms [11], 
it is direct to conclude that such element will provide an irradiance along the 
optical axis with a fractal profile. We called this kind of pupils fractal zone 
plates (FZPs) because, as we will see next, they can be constructed from 
conventional Fresnel zone plates in some cases. Although in the construction 
of a FZP any fractal 1-D structure can be used, we will focus our attention on 
binary Cantor sets. 
  As it is well known, a Fresnel zone plate consists of alternately transparent 
and opaque zones whose radii are proportional to the square root of the natural 
numbers. By using Eq. (2), it is easy to obtain that the function q(ς) for these 
pupils is a Ronchi-type periodic binary function with period p (see Fig. 1a), 
that can be written as 
  

                       

(4)

 
 
where the function mod(x, y) gives the remainder on division of x by y. 
 

 
 
Figure 1. Schemes for the generation of the binary function q(ς) for: (a) Fresnel zone 
plate with different periods pS=p(N,S), for N=2 and different values of S; (b) its 
associated FZP. In this representation clear and dark segments correspond to the values 
1 and 0 of the generating binary function, respectively. 
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  In a similar way, FZPs are constructed by replacing the above 1-D periodic 
function by a 1-D binary function with fractal profile. Consider, for example, 
the particular case of a regular Cantor fractal whose construction procedure is 
shown in Fig. 1b). In the first stage (S=1), the initial segment is divided into an 
odd number of segments 2N−1 and the segments in the even positions are 
removed (in the figure a triadic Cantor set was considered, thus 2N−1 =3). For 
the remaining N segments at the first stage, this “slicing and removing” 
process is repeated in the second stage and so on. In mathematical terms, the 
FZP transmittance function, developed up to a certain “growing” stage S, can 
be expressed as the product of the periodic functions q(ς) in Eq. (4) as 
 

                                      
(5)

 
 
It is instructive to note that the FZP in Eq.(5) can be understood as an 
associated Fresnel zone plate qZP[ς,p(N,S)], with period 
 

                                                                                
(6)

 
 
but with some missing clear zones (compare Fig. 1a with Fig. 1b). Figure 2 
shows a FZP generated from a triadic Cantor set, up to S=3, and the 
corresponding Fresnel zone plate with period p(2,3). 
 

 
 
Figure 2. Fresnel zone plate (a) and the associated FZP (b) generated from the 1-D 
functions in Fig. 1 for S=3. The generating process consists in rotating the respective 
whole structure around one extreme after the change of variables in Eq. (2). 
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 To compare the axial behavior of a FZP with its associated Fresnel zone 
plate, we will obtain analytically the axial irradiance distributions (  and 

 respectively) in both cases.   For the first case, from  the  recursive building 
procedure of the FZP and proper use of the convolution theorem for the 
Fourier transform in Eq. (3) it is easy to obtain that 
 

                       

(7)

 
 
For the associated Fresnel zone plate, Eq. (3) leads to the well-know result [12] 
  

                                                                 

(8)

 
 
In Eq. (8) M is the number of transparent Fresnel zones and is given by        
⎡(2N-1)S/2⎤, where ⎡x⎤, called the ceiling of x, denotes the smallest integer 
greater than, or equal to, x. 
 The axial irradiance of the FZP computed for different stages of growth S 
and for N=2 is shown in Fig. 3. The irradiance of the associated Fresnel zone 
plate is shown in the same figure for comparison. Note that the scale for the 
axial coordinate in each step is a demagnified version of the one in the 
previous step by a factor 2N−1 =3. It can be seen that the axial positions of the 
central lobes of the foci coincide with those of the associated Fresnel zone. It is 
clear that, while the internal structure of each focus in the Fresnel zone plate 
vanish progressively, the axial response for the FZP exhibits its characteristic 
fractal profile. In fact, the four patterns in the upper part of Fig. (3) are self-
similar. We called this scaling property along the optical axis, that holds for 
any N, the axial scale property. This means that the axial irradiance reproduce 
the self-similarity of the FZP. 
 In order to see the fractal behavior of the internal structure of the FZP foci, 
a more convenient representation of the axial irradiance can be achieved by 
noting that the irradiances in Eq. (7) and Eq. (8) are periodic functions of u, 
with period up=(2N−1)S. Thus, through the change of variables uN=u/up, we 
obtain 
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(9)

 
 
This last result for the FZP is shown in Fig. 4. It can be seen that the axial 
irradiance for a given stage S is a modulated version of that associated with the 
previous stage. In our case, as S increases, an increasing number of zeros and 
maxima are encountered which are scale invariant over dilations of factor 
2N−1 =3, as corresponds to a self-similar structure. As in the case of a Fresnel 
zone plate, the axial irradiance behavior of the FZP can easily be interpreted as 
the interference between the successive rings over the pupil. 
 For both the FZP and the ZP the main focus occurs at normalized value 
uN=0.5 that correspond to a focal length  
 

                                                                              
(10)

 
 
Note that although Figs. 3 and 4 seem to show that the axial irradiance is 
symmetric around each focus, it doesn’t stands if we represent this function 
versus the true axial distance z. This fact is illustrated in Fig. 5. 
 

 
 
Figure 3. Normalized irradiance vs. the axial coordinate u obtained for a FZP at four 
stages of growth (upper part) and for its associated Fresnel zone plate (lower part). In 
all cases N=2. 
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Figure 4. Log plot of axial irradiances vs. the reduced axial coordinate uN obtained 
from the plots in the upper part of Fig. 3. 
 

 
 
Figure 5. Normalized irradiance vs. the axial distance z (from the pupil plane) obtained 
for a FZP at four stages of growth (upper part) and for its associated Fresnel zone plate 
(lower part). In all cases N=2. The axial distance is normalized to the focal length 
f=f(N,S) given by Eq.(10). For simplicity we display a region up to z=2.5f. 
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3. Lacunarity in fractal zone plates 
 In the previous section the FZP considered were constructed from regular 
fractal structures in the sense that (as can be seen in Fig. 1b) the clear and dark 
regions have the same size. A more general FZP can be defined when another 
design parameter is taken into account: the lacunarity. The construction of a 
typical polyadic Cantor fractal set with a specific lacunarity is shown in Fig. 6. 
The first step in the construction procedure consists in defining a straight-line 
segment of unit length called initiator (stage S=0). Next, at stage S=1, the 
generator of the set is constructed by N (N=4 in the figure) non-overlapping 
copies of the initiator each one with a scale γ<1. At the following stages of 
construction of the set (S=2,3,...), the generation process is repeated over and 
over again for each segment in the previous stage. To characterize the resulting 
Cantor set, as well as many other fractal structures, one of the most frequently-
used descriptors is the fractal dimension, defined as 
 

                                                                                            
(11)

 
 
However, this parameter does not uniquely define the fractal. In fact, for the 
most general case, it is necessary to introduce another parameter to specify the 
distribution of the N copies into the unit length segment. This parameter 
specifies the lacunarity (or “gapinness”) of the resulting structure. In other 
words, structures with different lacunarity can have the same fractal 
dimension. As in previous papers dealing with Cantor fractals in Optics 
[13,14], the width of outermost gap in the first stage, ε (see Fig. 6) was used 
here for this purpose. However, the construction parameters of a FZP are not 
independent, and so they must satisfy the following constraints. On the one 
hand, the maximum value of the scale, γmax, depends on the value of N, i.e.,    
0≤ γmax ≤N−1. On the other  hand, for each value                       of        N and γ, there are two  extreme 
 

 
 
Figure 6. Schemes for the generation of the FZP binary function q(ς) for N=4 up to 
S=2. γ  is the scale factor and ε  is the parameter that characterizes the lacunarity. 
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values for ε. For the first, ε=0 , the result is the highest lacunar fractal, having 
the central gap very large while the outer ones become null. The other extreme 
value of ε is 
  

                                                                                
(12)

 
 
In this case, a lower lacunar structure than in the previous case is obtained, 
since the central gap is missed. Between zero and εmax there exists a particular 
value of ε that gives the lowest lacunar (or regular) fractal. This value of ε, 
obtained by imposing bars and gaps to have the same size at the initiatior stage 
(as done in Ref. [7]), is given by 
 

                                                                                            
(13)

 
 
 The influence of these construction parameters is shown in Fig. 7. FZPs 
are generated by mapping the Cantor bars (like the one in the middle row of 
Fig. 6, i.e., N=4 and S=1) by use of Eq. (2), and rotating the re-scaled bars 
around one of the extremes. FZPs for different values of γ  and ε are presented. 
 Summarizing, the number of stages, the lacunarity, the fractal dimension, 
and the scale, are the independent variables in the construction of a FZP. The 
influence of them on the axial irradiance given by Eq. 3 will be presented 
bellow. 
 Since for the regular case the axial irradiance is a periodic funtion of the 
coordinate u with period up=1/γS, the most graphical way to observe the axial 
fractal behavior of the irradiance is by defining the reduced axial coordinate as 
u/up=γSu. Figure 8 (top) shows the FZP constructed with γ=1/7 and the same 
values of ε  as in Fig. 7, but for S=2. The normalized axial irradiances given by 
these pupils are represented with solid line in Fig. 8 (bottom). Also, we have 
represented in dashed line the axial irradiances given by the corresponding 
FZP for S=1. From Fig. 8 it is obvious that the optical irradiance produced by 
the FZPs is highly influenced by the lacunarity. Besides, for the regular FZP 
(Fig. 8 middle), the self-similarity between these patterns can be clearly seen: 
the solid line pattern is a magnified version of the dashed one, and this one is 
an envelope of the former. 
 Although from this figure it seems that the self-similarity observed for the 
regular FZP (ε=εR) is not supported by other values of ε, this effect is an 
artifact due to the scale and range used in this figure. Another interesting result 
which is masked in Fig. 8 by the use of the normalized axial coordinate is that 
there are certain axial positions with zero axial irradiance for all values of ε. 
All these effects can be better seen in Fig. 9. 
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Figure 7. FZPs generated with three different values of γ and three different lacunarity 
ε. Note that εmax is different in each case being 3/38 (top); 3/14 (center line) ; and 3/8 
(bottom). 
 
 In this figure the axial coordinate is extended to cover several periods of 
the regular case. In this figure normalized axial irradiances (as a function of u) 
are represented as gray levels for six families of FZPs: three with the same γ  
as in Fig. 7 corresponding to S=1 (left) and other three with the same 
parameters but for S=2 (right). These irradiances were computed for the whole 
range of ε and then stacked sequentially to obtain these 2D displays (usually 
called twist plots [13]). The first common aspect to be noted in all pictures is 
that there are vertical dark bands corresponding to axial nulls whose positions 
remain invariant with the lacunarity. These nulls are obtained at values u= i/γS 
(for i=1, 2, ...), and are caused by the destructive axial interference between all 
points inside each individual ring with the same scale factor γ. In a similar 
way, the other nulls in this figure can be understood as multiple cross-
interferences between different rings of the FZP. At this point it is interesting 
to note  that      the re-scaled data in the stage S=1 form an envelope for the data at  
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Figure 8. Top: FZPs generated with γ=1/7, the same values of ε as in Fig. 7, and S=2. 
Bottom: Normalized axial irradiances obtained with theses pupils for S=2 (solid lines) 
and for S=1 (dashed lines). 
 
the S=2 one and both structures are self-similar for any value of ε. A similar 
behavior for other Cantor-related structures was previously reported [13,14].  
 To analyze how the lacunarity affects the axial irradiance, we can use a 
generalization of the correlation degree defined by Sakurada et al. [15] for 
measuring the self-similarity. In our case the axial irradiances for a variable 
lacunarity were correlated with the same function computed for ε=εR, since for 
this particular value the self-similarity exhibited by the axial irradiance 
reproduces the self-similarity of the FZP. Note that this case also corresponds 
to the lowest lacunar FZP. Thus, we use the correlation coefficient given by 
 

                                                               

(14)

 
 
 From its definition, the function C(ε) is expected to be a continuous 
function,  having  an  absolute  maximum  value  of     unity  at  ε =εR.  Since  the  
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Figure 9. Gray–scale representation of the axial irradiance (in dB) plotted as a function 
of the normalized axial coordinate and the lacunarity (twist plots) with the same values 
of γ  as in Fig. 7. Left and right correspond to S=1 and S=2, respectively. 
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infinite limits in the integrations in Eq. (14) would pose difficulties to the 
accurate numerical evaluation of C(ε), a more convenient expression can be 
obtained by using Eq. (3) and the Rayleigh’s theorem. In this way, C(ε) can be 
expressed as 
 

                                   

(15)

 
 
where ⊗ represents the convolution operation. With this definition the 
integrals in Eq. (15) are compact supported and the degree of similarity 
between axial irradiances can be more precisely numerically evaluated. The 
function C(ε) was computed for different values of S. The result is shown in 
Fig. 10. Compared with the result obtained for S=1 (dashed line) the 
correlation coefficient for S=2 (solid lined) present a higher number of maxima 
and minima and seems to be a modulated version of the previous stage. Thus, 
the function C(ε) has fractal properties itself to a certain extent, though limited 
for the range of ε available for each value of γ. This last result is another 
property of FZPs. 
 

 
 
Figure 10. C(ε) for the FZPs for S=2 (solid line) and S=1 (dashed line) with the same 
values of γ as in Fig. 7. 
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4. Conclusions 
 Regular FZPs and FZPs with variable lacunarity have been extensively 
analyzed. The construction restrictions and the interrelations between the 
different parameters has been investigated. We have shown that the irradiance 
along the optical axis produced by these pupils shows a characteristic fractal 
profile. The lacunarity has a dramatic effect on the axial irradiance provided by 
different FZPs with the same fractal dimension; however, certain aspects of the 
self-similarity are preserved. 
 The present study brings new lights on the powerful potential applications 
of FZPs, especially in scientific and technological areas where conventional 
zone plates have been successfully applied. Particularly, recent proposals of 
optical tweezers use phase filters to facilitate the trapping of particles in three-
dimensional structures [16]; spatial light modulators can be employed to 
display tunable FZPs producing focal spots that could be useful for these 
purposes. On the other hand, the non-uniform distribution of FZPs focal points 
along the optical axis could be exploited in ophthalmology for the design of 
multifocal contact or intra-ocular lenses for the correction of presbyopia. In 
this case, a mechanism to control the diffraction efficiency of the FZP should 
be first developed. Besides of the influence of optical aberrations, and 
polychromatic illumination on different geometries of FZPs, currently we are 
investigating non-binary FZPs and their properties. 
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