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Manufacture of pupil filters for 3D beam shaping

C. Ibáñez-López, L. Muñoz-Escrivá, G. Saavedra, M. Martı́nez-Corral *
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Abstract

In a previous work we presented a new method for binarizing pupil filters designed to control the three-dimensional (3D) irradiance
distribution in the focal volume of apodized systems. The method is based in the fact that the 3D amplitude point spread function of an
axially-symmetrical system can be recovered entirely from a one-dimensional (1D) set of regularly spaced amplitude samples. Hence we
proposed the use of 1D iterative Fourier transform algorithm to binarize a, properly mapped, version of the amplitude transmittance of
the filter. The binary masks obtained consist of a set of opaque and transparent concentric annular zones. In this paper we have built two
of these masks with opposing properties and we have experimentally verified their abilities in a focusing system. These experimental
results strongly agree previous theoretical predictions.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

The control of beam structure in the three-dimensional
(3D) region surrounding the focal point of focusing sys-
tems is an important task in various applications such as
conventional imaging systems [1–3], optical data storage
readout heads [4–6], optical tomography [7,8] where
although the axial resolution is determined by spectral
bandwidth of the light source, the transverse resolution
and the focal depth are determined by the focusing system,
or in confocal scanning microscopy [9]. Specifically, in con-
focal and multiphoton scanning microscopes the amplitude
distribution in the image of a point source, that is, the 3D
amplitude point spread function (PSF) of the system, is a
matter of interest. Therefore, several efforts have been
addressed to control its shape by the use of radially-sym-
metric pupil filters [10–16].

The manufacture of pupil filters in which the amplitude
transmittance is a continuous function of the radial coordi-
nate is a difficult task. In the case of purely absorbing filters
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a possible method to overcome this difficulty is to replace
them by binary functions obtained by means of digital half-
toning [17]. The resulting binary elements can be easily pro-
duced by light plotters of laser printers.

Iterative halftoning algorithms [18–25] constitute an
important class of a wide scope of digital halftoning meth-
ods [26]. They can be used for both binarization of images
and computation of binary diffractive optical elements.
Taking into account the computational effort we consider
the iterative Fourier transform algorithm (IFTA) one of
the most effective iterative halftoning procedures. It is espe-
cially well suited for the computer generation of match fil-
ters and Fourier transform holograms [27], nevertheless it
can be used for binarization of images as well [28,29].

In our previous papers we developed several digital half-
toning techniques, among others one derived from classical
IFTA, to binarize radially-symmetric continuous-tone
pupil filters [30,31]. The resulting annular binary filters pre-
served the symmetry of their gray-level counterparts. The
algorithm was initially used to generate pupil filters for
shaping the axial profile of the 3D PSF [31]. But in [32]
we demonstrated that in the case of radially-symmetric
pupils it is possible to shape the whole 3D behavior of
the PSF by means of annular binary filters which are com-
puted by 1D IFTA. This is of great importance from the
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point of view of 3D imaging, as in confocal or multiphoton
microscopy, for instance. In that paper we showed theoret-
ically how to shape the 3D light-field distribution about the
focus by using an iterative procedure in which both object
and spectral constraints are imposed on one-column matri-
ces. To this end we computed binary versions of axially-
superresolving and Gaussian pupil filters by using the
above mentioned algorithm. The resulting calculated 3D
PSFs closely approximated those of their gray-tone coun-
terparts. The interpretation of the obtained results is given
in terms of the axial sampling expansion for 3D PSF
[33,34].

Now, in this paper we experimentally demonstrate that
the use of these binary filters in a focusing system operate
as promised. We have constructed both binary filters and
measured the 3D response of an apodized focusing system.
Experimental results clearly agree the previous theoretical
predictions. Note that, although realized in a paraxial con-
figuration, the results of our experiment can be extrapo-
lated to a non-paraxial context in the case of the axial
response. The exact extrapolation of the transverse
response does not hold.

2. The axial form of the sampling theorem

Let us start by considering the normalized amplitude
PSF of an aberration-free telecentric system (see Fig. 1)
that is apodized by a purely absorbing radially-symmetric
pupil filter [35,36], namely

hðu; vÞ ¼ 2p
Z 1

0

tðqÞ expð�i2puq2ÞJ 0ðvqÞqdq: ð1Þ

In Eq. (1) the function t(q) represents the, properly scaled,
amplitude transmittance of the pupil filter being q the ra-
dial coordinate in the pupil plane. The axial and transverse
positions in the focal volume have been specified through
the nondimensional generalized longitudinal and trans-
verse coordinates
Fig. 1. Whatever focusing system we deal with, it can be schematized by
means of an aperture stop, under plane wave illumination, and a
converging spherical lens.
u ¼ a2

2kf 2
z ð2Þ

and

v ¼ 2pa
kf

r ð3Þ

respectively [37]. As shown in Fig. 1, z and r are the actual
axial and transverse coordinates, respectively, and f is the
focal length of the system.

In order to obtain the diffracted amplitude at any point
in the focal volume, once the axial distribution of the latter
is known, it is convenient to express the pupil function as a
product of the circle function and a function, tP, periodic in
q2 whose unit-cell transmittance is, precisely, that of the
pupil function. In mathematical terms

tðqÞ ¼ tPðqÞ � circðqÞ: ð4Þ
Since tP(q) is periodic in q2, it can be expressed in terms

of a Fourier series as

tPðqÞ ¼
Xþ1

m¼�1
Cm expði2pmq2Þ; ð5Þ

where, of course, coefficients

Cm ¼
Z 1

0

tðqÞ expð�i2pmq2Þqdq: ð6Þ

By comparing Eq. (6) with Eq. (1) one obviously has
that

Cm ¼ hðm; 0Þ=2p: ð7Þ
Then, the 3D normalized amplitude PSF of the system

can be expressed, by substituting Eqs. (4), (5) and (7) into
Eq. (1), as

hðu;vÞ ¼
Xþ1

m¼�1
hðm;0Þ

Z 1

0

circðqÞexp½�i2pðu�mÞq2�J 0ðvqÞqdq:

ð8Þ

In other words

hðu; vÞ ¼ 1

2p

Xþ1
m¼�1

hðm; 0ÞhCðu� m; vÞ; ð9Þ

where hC(u,v) represents the normalized 3D amplitude PSF
corresponding to the case of the circular aperture.

This relevant formula, which constitutes the axial form
of the sampling theorem [32], indicates that the 3D ampli-
tude PSF of an apodized system results from the coherent
superposition of an infinite number of properly axially
shifted PSFs corresponding to the circular aperture. The
shifts are equal to integer numbers. The weighting-factors
set of this superposition is built, precisely, by sampling
the axial PSF of the pupil filter in the axial nulls of the cir-
cular-aperture PSF. In other words, the 3D PSF of an
apodized system may be fully determined from a set of
sampling points that are regularly space along the optical
axis, and the 3D PSF of the clear circular aperture. It is
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Fig. 2. The flow chart of IFTA.
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usual in practice to express the latter in terms of Lommel
functions [37].

As a trivial example of the above statement we may con-
sider the case of the circular aperture. In this case the sam-
pled values are zero at all sampling points save the one
corresponding to m = 0. Therefore the trivial result
h(u,v) = hC(u,v) is obtained.

Since function h(u,v) is completely determined by the
value of h(u, 0) at u = 0,±1,±2, . . . (we assume that the cir-
cular-aperture PSF is known), it is convenient to express
function h(u, 0) in a simpler form. To that we perform
the following geometrical nonlinear mapping

l ¼ q2 � 0:5; qðlÞ ¼ tðqÞ: ð10Þ
Then, the axial amplitude PSF can be written, aside for

an irrelevant phase factor, in the following way

hðu; 0Þ ¼ p
Z 0:5

�0:5

qðlÞ expð�i2pulÞdl: ð11Þ

Since q(l) and h(u, 0) constitute Fourier transform pair,
h(u, 0), which is a band-limited function, can be completely
recovered, according to sampling theorem, from a set of its
properly spaced samples.

3. 1D iterative Fourier transform algorithm

As established in Section 2, the 3D amplitude PSF of an
apodized system is fully determined by a discrete set of val-
ues of the 1D Fourier transform of the mapped transmit-
tance q(l). It is then clear that, if we are interested in
obtaining a binary mask which reproduces the focal-vol-
ume structure corresponding to pupil filters designed to
control the 3D amplitude PSF, it is precisely q(l) the func-
tion which should be binarized. To reach this aim an algo-
rithm specially designed for obtaining strong resemblance
between the low-frequency spectra, at the proper sampled
points, of the function q(l) and its binary counterpart,
qB(l), should be used. Then, the 1D version of the IFTA
appears as an adequate binarization technique. Moreover,
since during the execution of the algorithm only the values
of the spectrum of q(l) at a discrete number of equidistant
points are of interest, the use of fast Fourier transform pro-
cedure to perform the different Fourier transformations,
does not constitute a numerical short cut, but the natural
and most efficient solution to this calculation problem.

The flow chart of the IFTA is presented in Fig. 2. The
operators used in the algorithm are defined as follows:

U ðkÞqjðlÞ ¼
0; jqjðlÞj 6 eðkÞ;

1; jqjðlÞj > 1� eðkÞ;

jqjðlÞj; otherwise;

8><
>: ð12Þ

and

H~qjðuÞ ¼
bjj~qðuÞj expfihðuÞg; u 2 S;

~qjðuÞ; otherwise;

�
ð13Þ

where hðuÞ ¼ argf~qjðuÞg.
The algorithm starts with the function q(l) sampled in
M equidistant points. Then, the discrete function under-
goes a nonlinear transformation by the operator U. The
modified function, U(qj(l)), is Fourier transformed (by
FFT algorithm) and then the function ~qjðuÞ is obtained.
Now Fourier domain constraints H are imposed. After this
modification the function is inversely Fourier transformed
to the spatial domain and U is again applied on it.

The operator U is a tunable nonlinear function which
allows one to avoid the stagnation of the algorithm [27].
The parameter e(k) 2 [0,0.5] is increased after a number
of iterations. Finally U approaches the thresholding opera-
tor. Thus the final loops of the iterations are executed with
the hardclip (e(k) = 0.5). The operator H represents the
constraints in the Fourier domain. In the predetermined
region S it substitutes the modulus of the spectrum of the
modified function by the modulus of the spectrum of the
original continuous-tone function. The proportionality
coefficient

bj ¼
P

u2S j~qjðuÞj2P
u2S jhðu; 0Þjj~qjðuÞj

; ð14Þ

which minimizes the quadratic deviation of j~qjðuÞj from
jh(u, 0)j over the window S, is calculated in each iteration.
When the procedure terminates, the inverse mapping of
qB(l) into the q domain leads to the actual filter consisting
of a set of M concentric annular zones of equal area.

4. The binary filters

The viability of the proposed method has been established
in two experiments. On the one hand we consider the axially-
superresolving parabolic filter, whose amplitude transmit-
tance is t(q) = (2q2 � 1)2, or after the mapping q(l) = 4l2

(see Eq. (10)). This filter provides a significant narrowness
of the central lobe of the axial PSF, but accompanied by a
severe enlargement of outer sidelobes. Moreover, the central
lobe of the transverse PSF remains almost unaffected. On the
other hand, we consider the Gaussian filter t(q) =
exp(�p2q2), or q(l) = exp(�p2(0.5 + l)). The filters have
been chosen with the intention of checking the accuracy of
our method in two quite different situations. In one case
we deal with a filter that compresses the focal volume. On
the contrary, the Gaussian filter provides an expansion of it.
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We aimed to get binary filters supporting 3D amplitude
PSFs that closely approximate those of the gray-tone coun-
terparts in a given volume surrounding the focal point. In
most of cases of interest the diffracted field surrounding
the focal point is vanishing small, except for a small volume
that encloses this point. Therefore, according to the axial
sampling theorem, we set the axial interval, A, where
~qBðuÞ should be virtually identical with h(u, 0), symmetrical
about the focal point and bounded by the third axial null
(positive and negative) of the circular-aperture PSF.

To start the algorithm the function q(l) was sampled,
for both filters, in M = 33 equally spaced points. At this
point a remark should be made about practical implemen-
tation on the algorithm. It is known that when the FFT
algorithm is applied to calculate the spectrum of a function
of compact support sampled at, for example, M points, it is
usual to surround it by zeros and form a vector of N > M

pixels. This is done to obtain a sufficiently dense sampling
in the spectrum. Note that our aim here is to obtain strong
resemblance between the spectrum of the binary mask,
~qBðuÞ, and the one of its continuous-tone counterpart,
Fig. 3. Binary version of the axially-superresolving filter obtained by 1D
IFTA for M = 33: (a) representation in the l space and (b) representation
in the q domain. The broken curves represent the amplitude transmittance
of the continuous-tone filter.
h(u, 0), in the axial points of coordinates u = 0, ±1, ±2,
and ±3. Then it is mandatory that such points coincide
with the sampling points in the Fourier domain. It is easy
to find that to fulfill this constraint the ratio N/M must
be integer. Now the question is to find out which is the
optimum value for the ratio. In this context it should be
considered that if the algorithm is performed by setting
N = M, the binarization noise, inherent to the use of digi-
tal-halftoning techniques, is transferred to the high-fre-
quency part of the spectrum. On the contrary, if N/M > 1
the binarization noise is transferred not only to outer parts
but also to points within the low-frequency area such that
u 5 m (note that also in this case the substitution region S

only includes integer values for u). In our experiments, as a
result of a comprehensive trial-an-error study, we estab-
lished that no improvement in terms of SNR is achieved
by setting N > M. In other words, an increase in the size
of the one-column matrices used in the algorithm does
not improve the results and only increase the computa-
tional effort. Therefore, we formed a vector composed by
M = 33 pixels.
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Fig. 4. Binary version of the Gaussian filter obtained by 1D IFTA for
M = 33: (a) representation in the l space and (b) representation in the q
domain. The broken curves represent the amplitude transmittance of the
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Fig. 5. Actual 2D representation of the binary filters: (a) parabolic filter
and (b) Gaussian filter.
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The 1 · M column matrix served as the input for the
IFTA algorithm. To continue with the algorithm three free
parameters should be fixed. The parameters are: the inter-
val by which e(k) is increased, the number of iterations
between the changes from e(k) to e(k+1), and the extension
of the spectral region S in which spectrum values are
substituted. During the experiment we found that the size
of spectral-exchange regions influences the SNR. Specifi-
cally we found that when S is centered about the focal
point and includes the four first axial nulls of the circu-
lar-aperture PSF, the SNR is maximized. That is, we found
optimal S to be slightly wider than A.

As regards the parameter e(k) we found in our experi-
ment that its optimum value is filter dependent. Specifically
we deduced, after a trial-and-error procedure, that for the
case of the axially-superresolving parabolic pupil filter,
the parameter e(k) must be increased from 0.025 to 0.5 by
0.025. On the contrary, for the case of the Gaussian filter
it was found that e(k) should be increased from 0.01 to
0.5 by 0.01. In both cases we found that the number of iter-
ations between e(k) and e(k+1) should be equal to two. A fur-
ther increase in the number of iterations did not influence
the result and only increased the time of computation.

The amplitude transmittances of the binary filters
obtained by the 1D iterative technique are shown in Figs.
3 and 4. In both figures the dashed curves represent the
transmittances for the continuous counterparts, in the l
and the q domains respectively. In Fig. 5 we show the filters
in their actual two-dimensional form. Note that both bin-
ary filters correspond to continuous filters with the same
radial extent.
Fig. 6. Experimental setup for the characterizati
5. Experimental results

To show the behavior of the designed filters we have
measured the 3D response of a focusing system when the
binary filters act as the entrance pupil of the system. The
scheme of the experimental setup it is shown in Fig. 6.
The monochromatic light proceeding from a CW, He–Ne
laser (k = 632.8 nm) propagates through a monomode
optical fiber of NA = 0.08. Both elements constitute a
Gaussian source of 5 lm in diameter placed at the front
focal plane of the collimating lens L1 (f = 125 mm and /
= 50.8 mm). Since the beam emerging from the lens is still
basically Gaussian, we can assume that its waist, x, is at
the back focal plane of L1 and about x = 10 mm. As we
see below, the binary filter has an outer most radius of
1.5 mm. Thus, we could assume in good approximation
that the beam emerging from the lens illuminated uni-
formly the binary filter, which was located at the front
focal plane of the focusing lens L2 (f = 381 mm). This con-
figuration conferred the system the property of telecentric-
ity and consequently the intensity distribution in the
neighborhood of the back focal plane of L2 is symmetric
respect to such plane.

The detector used is a CCD camera (AP1E from Apo-
gee) mounted on a micrometric translation stage over an
optical rail which permits the displacement along the opti-
cal axis (which we will hereafter call z-axis). Thus the beam
profile generated in the focal region of the focusing system
can be captured at different axial distances. Later process-
ing of this set of 2D images provides the whole 3D intensity
PSF of the system. The CCD chip (type KAF-4100E from
Kodak) consists of a grid of 768 · 512 pixels (9 lm · 9 lm)
equipped with a 14-bit analog-to-digital converter which
allows to obtain information even from regions of the focal
volume with very low intensity.

Before the acquisition of the images, the CCD camera
was calibrated to compensate possible pixel errors and to
determine the conditions under it works in the linear
regime. After the acquisition of the diffraction patterns,
each frame registered was corrected from bias and dark
current.

The binary filters were built by photolithographic meth-
ods with an outer diameter of 3 mm. Since we worked with
an optical rail with 50 cm travel, there was a twofold limit
on the aperture sizes that we could use. If the radius of the
on of the binary filters in a focusing system.
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aperture is too large, then the focal spot is too little and the
CCD cannot resolve it. If, in contrast, the radius is small,
then the axial extent of the 3D pattern is too long and,
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radius of 1.5 mm. With this radius, the diameter of the cen-
tral lobe of the focal spot is about 14 pixels of the CCD,
which provide very high resolution images, and the third
axial null is still within the optical rail.

After an axial scanning of the CCD we obtained a set of
2D images corresponding to the transversal patters in the
focal volume of the system at different z positions. The
proper combination of these images gives the whole 3D
intensity distribution. The experimental 3D PSF measured
for the focusing system apodized with the superresolving fil-
ter is shown in Fig. 7a. We also show the numerically-eval-
uated 3D PSF corresponding to the binary filter, Fig. 7b,
and to the continuous version of the filter, Fig. 7c. It is
apparent that the PSF of the binary filter closely approxi-
mates to that of the continuous one. To illustrate the accu-
racy of our measurements we have calculated the differences
between the experimental and calculated PSFs of the binary
filter, which are plotted in Fig. 7d.

In Fig. 8 we present the results corresponding to the
Gaussian filter. As in the previous case, experimental mea-
surements confirm the results predicted by the theory. In
this last experience we have demonstrated the possibility
to reproduce the 3D intensity distribution of a Gaussian
beam with a very simple pupil filter, which just consists
of two transparent centred rings.

The strong resemblance between theoretical and experi-
mental results confirm the numerical calculations presented
in [32] and demonstrate, on the one hand, that 1D IFTA
algorithm provides binary filters whose 3D response closely
approximates the intensity distribution generated by the
corresponding filters of continuous amplitude transmit-
tance. On the other hand, the experimental results prove
the fact that the use of amplitude filters constitutes one
of the more efficient techniques devoted to shape the 3D
response of a focusing system. Its low-cost and the slight
modifications required in the system architecture contrib-
ute to the success of this technique.

6. Conclusions

We have demonstrated, experimentally, the possibility
to control the 3D structure of the focal volume in focusing
systems by means of the binarized version of radially-sym-
metric purely-absorbing pupil filters specifically designed to
this end. The binarization method, which we thoroughly
explained in a previous paper [32], is based on the use of
a properly adapted version of IFTA which is applied to a
mapped transmittance of the filter. Although we deal with
3D fields we only need to apply the Fourier tools to one-
column matrices. As follows from the axial sampling theo-
rem, the 3D PSF of an apodized system can be recovered
with a set of regularly spaced axial samples. Hence, our
algorithm uses matrices with a very low number of pixels.
Therefore our approach exhibits a highly remarkable
time-computing efficiency when compared with other usual
2D algorithms. This efficiency could be very useful to
implement, in real time, radially-symmetric pupil filters
by means of programmable liquid-crystal spatial light
modulators [38].

To confirm the viability of our method we carried out
two experimental measurements. One with a filter that
compresses the focal field, the other with a filter that
expands it. In both cases, the resulting annular binary mask
provided a experimental 3D irradiance PSF that closely
approximates the one provided by the corresponding
gray-tone counterpart. This strong agreement of the exper-
imental results with the theoretical predictions reveals, not
only the capabilities of the 1D IFTA to provide binary fil-
ters which exhibit a very similar behavior to that of the
continuous counterpart but the efficiency of the use of
amplitude transmittance filters to control the 3D PSF of
a focusing system.
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