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An optical-digital method has been developed to obtain the Wigner distribution function of one-
dimensional complex fields. In this technique an optical setup is employed to experimentally achieve
the Radon–Wigner spectrum of the original signal through intensity measurements. Digital tomographic
reconstruction is applied to the experimental spectrum to reconstruct the two-dimensional Wigner dis-
tribution function of the input. The validity of our proposal is demonstrated with experimental data, and
the results are compared with computer simulations. © 2008 Optical Society of America
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1. Introduction

The Wigner distribution function (WDF) is a phase-
space representation that was introduced in optics
more than 30 years ago [1]. Since then, it has found
numerous applications and has become a very useful
tool for the theoretical analysis of optical systems
(see Ref. [2] and references therein). This formalism
is characterized by the simple and elegant transfor-
mation rules it follows for describing the propagation
of optical fields through linear systems and the gra-
phical way in which they can be interpreted.
Since the WDF of a complex field distribution con-

tains all the necessary information to retrieve the
field itself [3,4], several methods to obtain the
WDF that have been proposed previously in the lit-
erature could be used to this end. Optical or optoelec-
tronic devices are the most commonly employed
systems to obtain a representation of WDFs of
one-dimensional (1D) or two-dimensional (2D) com-
plex signals [5–7]. However, because most detectors
are sensitive to only the incident intensity, the opti-
cally obtained WDF, which is real but has in general
negative values, is obtained with an uncertainty in

its sign. On the other hand, obtaining the WDF of
wavefields is also possible indirectly through other
representations such as the Radon transform (RT)
[8]. In this particular case, a tomographic reconstruc-
tion is needed to synthesize the WDF and to recover
the amplitude and the phase of the original field dis-
tribution solely bymeans of intensity measurements.

In all the experimental setups that have been
tested for phase retrieval [3,4], these measurements
have been taken sequentially in time, varying the dis-
tances between some components for each singlemea-
sure and losing in this way the potential advantage
of parallel processing that optics may provide. In this
paper, a new hybrid optodigital method to overcome
this handicap is proposed.We use a simple optical de-
vice to obtain, in a single display (i.e., in parallel), the
Radon–Wigner spectrum of an input 1D signal. The
optical setup has no moving parts. Afterwards, the
WDF of the original object is reconstructed tomogra-
phically by means of the inverse Radon transforma-
tion of the irradiance output of the optical system.

2. Proposed Technique: Thoretical Background

The main goal of this contribution is to obtain a re-
presentation of the WDF of a 1D complex field. If this
field is represented by the function f ðxÞ, its WDF is
defined as
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Wf ðx;ωÞ ¼
Z þ∞

�∞

f ðxþ x
0
=2Þf �ðx� x

0
=2Þei2πωx0dx0

; ð1Þ

where the symbol � denotes complex conjugate. As
stated in the Introduction section, several authors
have proposed different techniques to obtain this
transformation by optical means. Since in all cases
the display of this function is achieved as the irradi-
ance distribution in the output plane of the optical
device, no information about the sign of the WDF
is provided. In fact, it is well known that, except
for the trivial case of Gaussian fields, all functions
f ðxÞ provide both positive and negative values for
their WDFs. This is a very critical issue, since quite
different fields may provide equal values for
jWf ðx;ωÞj2. However there is a biunivocal relation-
ship between every pair ðf ðxÞ;Wf ðx;ωÞÞ.
To overcome this incomplete reconstruction, we

propose a new approach for obtaining the values of
the WDF of a complex field from the experimental
data recorded in a single 2D intensity measurement.
In our proposal, instead of measuring theWDF itself,
we take measurements of a complete set of projec-
tions of the WDF, which have the property of having
only positive values [2]. Each one of these projections
is known as the Radon–Wigner transform (RWT) of
the original field f ðxÞ. The subsequent application of
digital tomographic reconstruction techniques will
provide us with the required full WDF information.
Mathematically, the RWT of a 1D function f ðxÞ is

defined as the path integral (i.e., a projection) of the
2D WDF of f ðxÞ performed over a straight line in the
phase space [3]. Explicitly,

Rf ðu; θÞ ¼
Z þ∞

−∞

Wf ðu × cos θ − ω × sin θ;u × sin θ

þ ω × cos θÞdω ∀ θ ∈ ½0; π�; ð2Þ

θ being the projection angle for theWDF [in Eq. (2) we
have used a new coordinate system ðu; θÞ in the phase
space defined by the rotation of the system ðx;ωÞ by
the angle θ]. The 2D continuous display of this func-
tion, for all the possible projection angles, is known as
the Radon–Wigner spectrum of f ðxÞ. In computer-
assisted tomography the Radon spectrum is also
known as a sinogram. This name comes from the fact
that the Radon transform of a single off-center point
in the function to be reconstructed is a sinusoid.
The RWT of f ðxÞ can also be obtained indirectly

from its fractional Fourier transform (FrFT), Ff ðx; θÞ,
which is another integral transformation of f ðxÞ
defined as

Ff ðu; θÞ ¼
Z þ∞

−∞

f ðxÞKðθ;u; xÞdx; ð3Þ

being

Kðθ;u; xÞ ¼ expðiθ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
i sin θ

p expfiπðu2 cot θ − 2ux csc θ

þ x2 cot θg: ð4Þ

The kernel Kðθ;u; xÞ reduces to δðu − xÞ and to
δðuþ xÞ when θ ¼ 0 and θ ¼ π, respectively. This
means that Ff ðu; 0Þ ¼ f ðuÞ and Ff ðu; πÞ ¼ f ð−uÞ. On
the other hand, when θ ¼ π=2 or θ ¼ −π=2 we have
the Fourier transform and the inverse Fourier trans-
form of f ðxÞ respectively. Many other properties of
the FrFT can be found in Refs. [9] and [10].

The mathematical relationship between the RWT
of f ðxÞ and its FrFT has been established in Ref. [11]
and is given by

Rf ðu; θÞ ¼ jFf ðu; θÞj2: ð5Þ

The FrFT of a given input function can be obtained
experimentally by means of several simple optical
setups [11,12]. Based on these results, several ex-
perimental methods for obtaining the Radon–Wigner
spectrum were also proposed [13–15]. However, to
the best of our knowledge, the only one that has
found practical applications [16–18] is the one re-
ported in Ref. [14]. A new application of that method
is proposed here to obtain the WDF of any complex
signal from intensity measurements.

Based on Eqs. (2) and (3), the technique that we
propose is divided into two basic stages, as sketched
in Fig. 1. In the first one, provided the theoretical
relationship between RWT and the FrFT, the experi-
mental Radon–Wigner spectrum of the input func-
tion is obtained from a 2D single-shot intensity
measurement. In the second step, the desired WDF
is obtained by computation of the tomographic recon-
struction of the WDF from the experimental result in
the first step.

3. Optical Achievement of the Radon–Wigner
Spectrum

For the optical achievement of the Radon–Wigner
spectrum of a 1D function we used the setup pro-
posed by Granieri et al.[14]. The optical device is very
simple, consisting of only two bulk elements: a cy-
lindrical lens and a varifocal lens. As is shown in
Fig. 2, the 1D object is illuminated with a cylindrical
wavefront. In this way, all the Fresnel diffraction pat-
terns of the object are axially located within the re-
gion limited by the object and the illumination focus
line. Due to the 1D character of these patterns, for

Fig. 1. Diagram of the proposed hybrid optodigital method.
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each one of them it is possible to select 1D horizontal
slices of infinitesimal width as independent informa-
tion channels. The varifocal lens focuses simulta-
neously each one of these slices at different heights
at the output plane. Provided the existing relation-
ship between those diffraction patterns and the FrFT
of the object [12], and using Eq. (3), it was demon-
strated [9] that at the output plane one obtains a
close approximation of the Radon–Wigner spectrum
of the object. The Radon–Wigner spectrum obtained
in this way comprises the angular region θ ∈ ½0; π=2�.
Note, however, that this is enough to complete the
whole domain of the RWT (in which the θ parameter
takes values from 0 to π) because of the symmetry
property of the RWT, namely,

Rf ðu; θÞ ¼ Rf ðu;�θÞ ¼ Rf ð�u; π � θÞ: ð6Þ

4. Digital Tomographic Reconstruction of the WDF

The second part of the proposed method is the digital
computation of the inverse RTs of the experimental
Radon–Wigner spectrum. The most common algo-
rithms used in tomographic reconstruction are based
on the technique known as filtered backprojection
[19]. In this section we briefly present the steps that
we followed to apply this technique in our reconstruc-
tion method.
The filtered backprojection algorithm is based on

the central slice theorem, which states that the
Fourier transform of the projection of a general func-
tion taken at an angle φ equals the central slice, at
the same angle, of the 2D Fourier transform of gðx; yÞ
[12]. In our case, the central slice theorem gives

~Rf ðv; θÞ ¼ ~Wf ðν cos θ; ν sin θÞ; ð7Þ

where ~Rf is the 1D Fourier transform of Rf with
respect to the spatial coordinate and ~Wf is the 2D
Fourier transform of Wf . The inversion of this last
transformation allows the recovery of Wf ðx;ωÞ from

its projections
Rf ðu; θÞ

.
Explicitly,

Wf ðx;ωÞ ¼
Z þ∞

−∞

Z þ∞

−∞

~Wf ðξ;ψÞ expf2πiðξxþ ψωgdξdψ

¼
Z þ∞

0

Z π

0

~Rf ðv; θÞ expf2πiðx × cos θ þ ω

× sin θÞgjvjdvdθ; ð8Þ

where Eq. (7) has been properly used to change the
integration variables. Finally, this result can be ex-
pressed as

Wf ðx;ωÞ ¼
Z π

0
Sf ðx × cos θ þ ω × sin θ; θÞdθ; ð9Þ

being

Sf ðu; θÞ ¼
Z þ∞

−∞

~Rf ðv; θÞjvje2iπvudv: ð10Þ

Equation (10) can be clearly identified as a filtered
version of the original RWT. In this way, from
Eq. (9), Wf ðx;ωÞ is reconstructed for each phase-
space point ðx;ωÞ as the superposition of all the pro-
jections Sf ðu; θÞ passing through this point.

5. Results and Discussion

The validity of our proposal has been verified with
the experimental results obtained for the Radon–
Wigner spectrum of different 1D functions. In Fig. 3
we show the optical displays obtained for two differ-
ent functions, namely, a rectangular aperture (single
slit) and a grating with a linearly increasing spatial
frequency (chirp signal). These Radon–Wigner spec-
tra were obtained with the optical device described in
Fig. 2. It is interesting to note that the vertical slices
of the continuous displays in Fig. 3 can be associated
with the Fresnel diffraction patterns of the object
evolving in the free space [12,14].

It is worth to mention that to undertake the
reconstruction of the WDF through the filtered back-
projection algorithm it is necessary to consider the
complete angular region of the Radon–Wigner
spectrum, that is θ ∈ ½0; π�. Although we only obtain

Fig. 2. Experimental device for obtaining the Radon–Wigner
spectrum of a 1D object by means of intensity measurements.
The cylindrical lens images all the diffraction patterns of the input
object, each one of them located between the input and the focal
line at a different axial position. The varifocal progressive lens
images each and every one of the infinitesimal strips, located at
different heights (y) and each one corresponding to an individual
pattern, at the same output plane.

Fig. 3. Experimental Radon–Wigner spectrum of (a) a single slit
of 2:2mm and (b) a binary grating with a linearly increasing spa-
tial frequency.
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optically the RWT for θ ∈ ½0; π=2� the symmetry
property in Eq. (6) has been used to complete the
spectrum. From the experimental Radon–Wigner
spectra in Fig. 3, the corresponding WDFs have been
obtained using the filtered backprojection algorithm.
For comparison purposes, Figs. 4 and 5 show both

the theoretical and the experimentally reconstructed
WDFof the single slit and the chirp grating. Note that
in Figs. 4(b) and 5(b) some artifacts appear. The lines
radiating from the center and outwards are artifacts
(ringing effect) due to the filtered backprojection
method [16]. In spite of this effect, a very good quali-
tative agreement can be observed between the results
obtained with the theoretical and experimental data.
It can be noted that the asymmetry in Fig. 4(b) is a
consequence of the noise in Fig. 3(a), also reflecting
the asymmetry on the spatial coordinate in this fig-
ure. From Fig. 5 the typical arrow-shaped WDF of a
chirp function can be observed in both cases. It is no-
ticeable that the slope in the arrow head that charac-
terizes the chirp rate of the signal is the same for the
theoretical and the experimental results.

6. Conclusions

A novel technique has been developed to obtain the
WDF of a 1D signal. The method is divided into two
steps. The first one implements a simple optical setup
for obtaining the Radon–Wigner spectrum by means
of a 2D single-shot intensitymeasurement. In the sec-
ond step, this spectrum is used for a tomographic re-
construction of the WDF. Two different example
objects, a single slit and a chirp signal, have been se-
lected to prove the capabilities of the proposed meth-
od. The reconstructed WDF has been qualitatively
compared with theoretical results, confirming the va-
lidity of the technique. Several extensions of the pro-
posedmethodare straightforward.On the onehand, a
similar implementation proposed here for the WDF
can be easily derived for the ambiguity function,
which is related to the WDF through a Fourier trans-
formation [2]. Note also that it is easy to extend the
method to obtain 2D samples of the 4DWDFof a com-
plex 2D signal by use of a line scanning system.
Moreover, since complex optical wavefields can be re-
constructed from theWDF, provided the inversion for-
mulas [1], this approach can be used as a phase
retrieval method, becoming an alternative to the con-

ventional interferometric or iterative-algorithm-
based techniques. In fact, aswasvery recently demon-
strated [20], phase retrieval is possible with intensity
measurements at two close FrFT domains, but this
approach requires some a priori knowledge of the sig-
nal bandwidth. In our method a continuous set of
FrFTs is available simultaneously, and this redun-
dancy should avoid any previous hypothesis about
the input signal. This subject, and the improvement
of the efficiency of the tomographic reconstruction (by
takingadvantage of certain general symmetries of the
WDF), are current topics of our research program.
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References
1. M. J. Bastiaans, “The Wigner distribution function applied to

optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
2. D. Dragoman, “The Wigner distribution function in optics and

optoelectronics,” Prog. Opt. 37, 3–53 (1997).
3. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-

field reconstruction using phase-space tomography,” Phys.
Rev. Lett. 72, 1137–1140 (1994).

4. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and
M. G. Raymer, “Optical phase retrieval by phase-space tomo-
graphy and fractional-order Fourier transforms,” Opt. Lett.
20, 1181–1183 (1994).

5. K. H. Brenner and A. W. Lohmann, “Wigner distribution func-
tion display of complex 1D signals,” Opt. Commun. 42, 310–
314 (1982).

6. Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribu-
tion and ambiguity function for complex signals and images,”
Opt. Commun. 67, 177–179 (1988).

7. G. Shabtay, D. Mendlovic, and Z. Zalevsky, "Proposal for opti-
cal implementation of theWigner distribution function,”Appl.
Opt. 37, 2142–2144 (1998).

8. R. L. Easton, Jr., A. J. Ticknor, and H. H. Barrett, “Application
of the Radon transform to optical production of theWigner dis-
tribution,” Opt. Eng. 23, 738–744 (1984).

9. V. Namias, "The fractional order Fourier transform and its ap-
plication to quantummechanics," J. Inst. Appl. Math. 25, 241–
265 (1980).

10. L. B. Almeida, ‘‘The fractional Fourier transform and time-
frequency representations,’’ IEEE Trans. Signal Process. 42,
3084–3091 (1994).

11. A. W. Lohmann and B. H. Soffer, “Relationships between the
Radon–Wigner and fractional Fourier transforms,” J. Opt. Soc.
Am. A 11, 1798–1801 (1994).

Fig. 4. (a) TheoreticalWDFof a single slit. (b)Experimental result
for the tomographic reconstruction of the WDF of the same slit.

Fig. 5. (a) Theoretical WDF of a binary grating with a linearly
increasing spatial frequency. (b) Experimental tomographic recon-
struction of the WDF of the same grating.

E66 APPLIED OPTICS / Vol. 47, No. 22 / 1 August 2008



12. P. Andrés, W. D. Furlan, G. Saavedra, and A. W. Lohmann,
"Variable fractional Fourier processor: a simple implementa-
tion," J. Opt. Soc. Am. A 14, 853–858 (1997).

13. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and
C. Ferreira, “Optical illustration of a varied fractional Fourier
transform order and the Radon–Wigner chart,” Appl. Opt. 35,
3925–3929 (1996).

14. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andres,
“Radon–Wigner display: a compact optical implementation
with a single varifocal lens,” Appl. Opt. 36, 8363–8369
(1997).

15. Y. Zhang, B. Gu, B. Dong, and G. Yang, “Optical implementa-
tions of the Radon–Wigner display for one-dimensional sig-
nals,” Opt. Lett. 23, 1126–1128 (1998).

16. S. Granieri, E. E. Sicre, and W. D. Furlan, “Performance ana-
lysis of optical imaging systems based on the fractional Four-
ier transform,” J. Mod. Opt. 45, 1797–1807 (1998).

17. O. Trabocchi, S. Granieri, and W. D. Furlan, “Optical propaga-
tion of fractal fields. Experimental analysis in a single dis-
play,” J. Mod. Opt. 48, 1247–1253 (2001).

18. S. Granieri, M. Tebaldi, and W. D. Furlan, “Parallel fractional
correlation: An optical implementation,” Appl. Opt. 40, 6439–
6444 (2001).

19. A. C. Kak and M. Slaney, Principles of Computerized Tomo-
graphic Imaging (IEEE Press, 1988).

20. U. Gopinathan, G. Situ, T. J. Naughton, and J. T. Sheridan,
"Noninterferometric phase retrieval using a fractional Fourier
system," J. Opt. Soc. Am. A 25, 108–115 (2008).

1 August 2008 / Vol. 47, No. 22 / APPLIED OPTICS E67


