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Performance parameters have been presented that can be used to compare the focusing performance of dif-
ferent optical systems, including the effect of pupil filters. These were originally given for the paraxial case
and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vec-
torial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different
optical systems is compared. © 2008 Optical Society of America
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Superresolving pupil filters have many potential ap-
plications in optical systems for microscopy, informa-
tion storage, and material processing. Simple expres-
sions for performance parameters for the scalar
paraxial case were presented by Sheppard and Hege-
dus [1]. These are useful design tools as they allow
the investigation of filter performance without the
necessity for computing the focal intensity. These pa-
rameters hold for real filters, including the important
case of phase filters with a phase change of 180°. The
parameters include transverse and axial gains, the
Strehl ratio, which is a measure of the filter effi-
ciency, and the ratio of the intensity at focus to the
total energy, which is a measure of how strong the
central lobe is compared with the outer rings.

Usually filters are most useful when working with
a high numerical aperture, and the parameters have
recently been generalized to the high-aperture scalar
case [2]. However, if the numerical aperture is large,
then polarization effects become important, so pa-
rameters based on a full electromagnetic theory
would be advantageous. A few papers have consid-
ered the effects of filters based on a vectorial theory
[3-7]. The most important polarization case is that of
a plane-polarized beam focused by a high-aperture
lens.

We consider a high-aperture optical system in the
Debye approximation, illuminated by a plane-
polarized wave. For an axially symmetric pupil, the
electric field in the focal region at the point p, ¢,z in
cylindrical coordinates can be written as [8]

E.=-ikf(Iy+15cos 2¢),

E,=—ikfI;sin 2¢,

E, = - 2kfI, cos ¢, (1)

where
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o 1- n/2
In=j Q(C)(l—_’_Z) J,(kp\1-c?exp(ikzc)dc. (2)

Here Q(c) is the pupil function expressed as a func-
tion of c=cos 6, where 6 is the angle between the di-
rection of the propagation of a plane wave component
and the axis. @(c) includes the effect of a pupil filter,
if any, an apodization factor that depends on the de-
sign of the optical system (c'/? for an aplanatic sys-
tem) and an additional factor (1+c¢) and is taken to be
zero for ¢>1 and ¢ <cos a, where a< 7. The limiting
value a=m corresponds to a complete sphere of radia-
tion and usually in practice a< 7/2. Note that Eq. (2)
allows all three integrals to be written neatly in a
compact form. Expanding in terms of power series to
the second order in distance from the focus, we have

= (kp)? 1
I,= f Q)| 1- T(l —c?) +ikze - 5(1&22)2(32 de,

0 kp
I, = f Q)1 - C)E(l +ikze)de,

(kp)?
8

Iy= Jw Q)1 -c)? de. 3)

Introducing the moments of the pupil,

qn= J Q(c)c"dc, (4)
we then have
_ (k2)?  (kp)?
Iy=qo+ikzq, - 2 Q2—_4 (q0-q2),
kp i(kz)(kp)
I = ?(QO -q1)+ T(‘h -q9),
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I2=T(QO_2(]1+QQ)- (5)

Often, we wish to produce the most localized wave
field for a particular value of the numerical aperture,
sin a. The simplest measure of localization is the nor-
malized intensity at focus for a given focused power.
It is well known that in the paraxial case this is
maximized for a pupil of constant value (the
Luneberg apodization problem [9], pp. 348-353),
which we may take to be unity. For the high numeri-
cal aperture case, at the focal point only /) is nonzero,
so the intensity (time-averaged electric energy den-
sity) at focus is q(z). We can use Schwarz’s inequality
to show that the ratio of the intensity at the focus to
the focused power is maximized for a mixed-dipole
field Q(c)=(1+c¢)?/2, cos a<c<1 [10].

The focused power is proportional to

w 4 2
E=f lQ(c)|

L (1+¢)? ¢

(6)
We define a normalized time-averaged electric energy
density F as

3q3
T 4R

and find that for the mixed-dipole field this tends to
one-half as a— . The total normalized time-
averaged energy density (electric and magnetic) at
the focus for a— 7 is then unity, which explains the
factor 3/4 in Eq. (7).

It should be noted that, unlike the paraxial case,
the integral of the intensity (energy density) over the
focal plane is not proportional to the power crossing
the focal plane [11]. The integral of the intensity is

proportional to
= Q)
Ligta1 = ——d (8)

C’
Lc(l+¢)?

(7)

where now a<<7/2 to include only forward propagat-
ing waves. The ratio of the intensity at the focus to
the integrated intensity over the focal plane is maxi-
mized if

c(1+c¢)?

Qle)=——F—,

5 cosa<c<l1 9)
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Fig. 1. (a) Variation in F, the ratio of the intensity at focus
to the input power, for aberration-free focusing systems of
different types. (b) Variation in F, the ratio of the intensity
at focus to the integrated intensity in the focal plane.

averaged energy density F; as
343
161 total ’

F; (10)

as then it behaves the same as F for small «. For the
perfect mixed-dipole wave for a— w/2, F;—17/64
~0.27. In many practical cases F; is a more useful
criterion than F, as it describes how the intensity at
the focus compares with the integral over the side-
lobes. Figure 1 shows the variation of F and F; with «
for these different types of optical systems. Also in-
cluded is the Herschel case, Q(c)=(1+c)/2, corre-
sponding to a uniform angular distribution, the
Helmbholtz apodization, @(c)=c%2, corresponding to
a planar diffractive lens, and the parabolic mirror
apodization, @(c)=1 [10,13].

Equations (1) and (5) show how the intensity falls
off away from the focus and can be used as approxi-
mate measures of the FWHM. Compared with a com-
plete scalar uniformly distributed spherical illumina-
tion, we can thus introduce gain parameters
G, and Gy for the linearly polarized case:

for any a<w/2. This has been called a perfect wave <q0q2 - q%)
by Stamnes [12]. We thus call it a perfect mixed- Gy=3 ——— |, (11)
dipole wave. We define another normalized time- 90
3| (49091 - 29092 — 293) - (395 — 6091 + qoga + 297)cos 24
r=- 5 . (12)
4 90



478  OPTICS LETTERS / Vol. 33, No. 5 / March 1, 2008
Helmholtz parabolic
Herschel G
e, Gy mixed dipole ¢ 1 aplanatic
0.8 ! 0.8 annulus
0.6 o 06 perfect
! annulus . .- berfect g-j """" perfect 04 ~mixed dipole
aplanatic 0'2 5 Herschel
o (radians) : o (radians) ’ parabolic
7 3 T 2 3 05 1 1. 2 %5 3
02 } \ \/\ zmle 02 L 02 o (radians) 5\ \
Herschel
Helmholtz” paranolic
(a) (©
boli
e 1 parabolic Gp 1
88 Herschel 08 aplanatic
06 06 mixed dipole
04| annulus mixed dipole 04| S A\ _____He erschel
0.2 02
e o (radians) parabolic
7 RV 3. ] 2 fans]
02 l perfoct 02 ' \ o. (radians;
(d) (e)
Fig. 2. Gains, compared with complete scalar spherical illumination, for aberration-free focusing systems of different

types: (a) transverse x, (b) transverse y, (c) transverse circular-polarized, (d) axial gains, and (e) polar gains.

The central lobe of the focal spot is sharpened up by a
factor GX?T compared with a scalar spherical wave.
Along the x and y axes (¢=0 and 7/2, respectively),
we have

3 [ 10g0q1 - 3q0q2 - 395 - 495
=— , (13)

G, =
4 a5

3 ( 3q% - 29091 - 9092
, (14)

"4 9o
and for circularly polarized illumination the average
of these:

3 (49091 - 29092 - 2‘1%
. (15)

GC':_
4 s

We can also define a polar (3D) gain Gp=(G,+G,
+Gy)/3:

2q1(qo-q1)

g a3

The variation of the gains with aperture is shown in
Fig. 2. In the y direction, for the mixed-dipole case
the gain increases monotonically with aperture be-
coming greater than unity for apertures >#/2. The
aplanatic case and the perfect wave result in reduced
gains. The Herschel, Helmholtz, and parabolic mirror
apodizations give increased gains, as could be ex-
pected from the increased strength of the angular
spectrum at high angles, but this is accompanied by a
reduction in F' and F; as a consequence of the in-
creased strength of the outer diffraction rings. For
the aplanatic case the gain falls off slightly relative
to the mixed-dipole case for apertures close to /2.
For circularly polarized illumination, the gain for the
mixed-dipole case falls off a little for apertures ap-

(16)

proaching 7. As an example of a pupil mask we also
give results for a narrow annulus at «, for which the
gain in the y direction is increased. In the x direction,
the value of G, for the mixed-dipole field and the an-
nulus become negative (corresponding to a focal mini-
mum in intensity) for large apertures as a result of
the doughnut focal spot of the longitudinal electric
field component. Thus a narrow annulus does not re-
sult in a sharper focal spot than a circular aperture
for high numerical apertures, as has been pointed out
previously [14].
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