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I. INTRODUCTION 
 
Imaging systems with a high depth-of-field (DOF) are 

required in many applications across different fields [1-5], 
such as microscopy [6-8] and communications [9]. However, 
most imaging systems described in the literature are very 
sensitive to defocusing. This means that small misalign-
ments between the object and image plane impose great 
limitations on the imaging systems. In order to increase the 
DOF of these systems, numerous studies have been carried 
out recently along these lines [10-16]. 

The trivial method for increasing the DOF is to reduce the 
numerical aperture (NA) of imaging systems. However, this 
provokes a dramatic decrease in the transverse resolution: 
there exists a compromise between the transverse resolution 
and DOF. Thus, considerable effort has been expended in 

attempting to increase the DOF of imaging systems without 
undermining their resolution. In a particular case of the 
extension of the DOF while maintaining the transverse 
resolution [8, 13], many pupil masks have been designed 
based on phase [6, 7, 13-15, 17, 18] and/or amplitude [19-21]. 
It is of interest that the advantages of phase masks are 
superior to those of amplitude masks, including the fact that 
the most recently developed amplitude masks are not 
sufficiently light efficient. Another technique is the utilization 
of a multifocal concept, which uses various lenses of different 
focuses [22]. 

In this work, we analyze the enhancement of DOF in 
imaging systems. For this, we employ the analogy between 
the axial behavior of a system affected by spherical 
aberration and the transverse response of an imaging system. 
To study the increase in the DOF, we implement an 
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Abstract 
This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is 
very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been 
reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use 
of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical 
architecture. In the filter design, we have used the analogy between the axial behavior of a system with spherical aberration 
and the transverse impulse response of a 1D defocused system. This allowed us the design of a ring-shaded filter. Finally, 
experimental verification of the theoretical statements is also provided. 
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amplitude filter in two optical systems. Similarly, any other 
filter designed to reduce the spherical aberration can be used 
to increase the DOF. 

The paper is organized as follows. In Section II, we derive 
the equations that describe an optical system affected by 
spherical aberration. Also, as a specific case worth analyzing, 
the complex amplitude distribution is particularized to study 
the axial behavior of the imaging system. Section III is 
devoted to demonstrating the similarity between the axial 
response of an imaging system with spherical aberration and 
the transverse response of an optical system. Finally, in 
Section IV, we set up two different experiments. The first of 
them is implemented in an imaging system whose NA is low. 
For this case, we show both the numerical and experimental 
verification; the high agreement between them is clear. The 
second experiment is performed with conventional scanning 
microscopy. To sum up, in Section V, we conclude the main 
achievements of our research. 
 
 
II. THE MISMATCH INDEX-INDUCED 

SPHERICAL ABERRATION 
 

In this section, we study the aberration in a high-NA 
system when the wave field is focused through several 
media stacked perpendicularly to the optical axis. 

Let us start by considering a high-NA objective lens 
illuminated by a monochromatic collimated beam with 
wavelength λ. The geometry of the objective is illustrated in 
Fig. 1. Contrary to what happens in the paraxial approach, 
the objective is characterized by its principal surfaces, 
which are a planar surface, S1, and a spherical surface S2, 
with focus f and centered at the focal point, F. In most of the 
high-NA objectives reported in the literature, the aperture 
stop is located at the back-focal plane. Thus, if a monochro-
matic planar wave strikes the objective lens, the emerging 
wave field is a truncated spherical wavefront [23]. This 
wavefront is focused passing through a dielectric layer, the 
coverslip, whose thickness is t and refractive index n’, 
immersed into a medium with a different refractive index. 

The amplitude distribution at the neighborhood of the 
focal plane can be calculated according the scalar, non-
paraxial Debye’s formulation [24] and assuming that the 
sine condition [25, 26] holds. After straightforward maths, 
the complex amplitude distribution along the optical axis is 
given by [27] 

U w40, w20( ) = q ζ( )exp i2πw40ζ( )exp −i2πw20ζ( )dζ
−0.5

0.5

∫ , (1) 

where w40  and w20  are, respectively, the well-known 
spherical-aberration coefficient and defocus coefficient, as 
measured in units of wavelength, and q(ζ )  is the apodized 
amplitude transmittance of the aperture stop. 

 

Fig. 1. Conceptual diagram to explain the focus process in a high 
numerical aperture objective into two media separated by a planar 
interface. 

 
 

III. DESIGN OF BEAM-SHAPING ELEMENTS 
TO INCREASE THE DEPTH-OF-FIELD 

 
Our aim here is to study beam-shaping elements that 

increase the DOF of optical systems. For that, let us con-
sider a conventional two-dimensional (2D) imaging system, 
which basically consists of a telecentric arrangement, as 
shown in Fig. 2. 

The telecentricity provides two important properties to 
the system: the system is 2D linear and shift-invariant. 
Therefore, the 2D irradiance distribution at the image space 
can be expressed as the 2D convolution between a scaled 
version of the 2D object and a 2D function, which is called 
the intensity point-spread function (PSF) of the imaging 
system [28], 

 I x, y;z( ) = 1
M 2 O x

M
, y
M

⎛
⎝
⎜
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⎟⊗2 h ' x, y;z( ) 2

,      (2) 

where M = − f2 / f1  is the magnification of the imaging 
system and the intensity PSF is then obtained as the square 
modulus of the amplitude PSF 
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where, p(xp , yp )  represents the amplitude transmittance of 
the aperture stop (Fig. 2). We have also omitted some 
irrelevant factors. In the particular case in which the pupil 
function is separable in Cartesian coordinates, the amplitude 
PSF can be rewritten as h '(x, y;z) = hx

' (x;z)hy
' (y;z) , being 
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Fig. 2. Schematic of a two-dimensional telecentric imaging system. The 
light emanating from the object is collected by the objective (L1) and 
focused by the tube lens (L2). 
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 (4) 

Note that the coordinates in the aperture stop plane have 
been normalized as 

 
 
μ =

xp

2rmax

,  (5) 

 
 

 
(a) 

 

 
(b) 

Fig. 3. (a) Shaded ring filter for reduction of the spherical aberration 
impact, (b) Cartesian version of the filter. 

where rmax  is the radius of the circle in which the square 
pupil is inscribed. 

It is interesting to note the similarity between Eqs. (1) and 
(4). This implies that the axial response of an imaging 
system affected by spherical aberration behaves similarly to 
the transverse response of an imaging system with a square 
pupil. This reasoning leads us to conclude that the amplitude 
profile family designed to reduce the spherical aberration 
may also be used to provide greater tolerance to defocusing 
in imaging systems. 

The general case study can be particularized to the case of 
binary masks known as shaded ring (SR) filters. These filters 
are composed of three annular zones with two different 
transmittances, and each mask is uniquely specified by two 
construction parameters (μ, η) as defined in Fig. 3. From Fig. 
3, it is trivial to realize that a square filter produces a 
significant loss of resolution in certain transverse directions 
because the entire pupil size is not used. Consequently, a 
corresponding radial version has been designed (Fig. 4), 
where the transverse resolution is now the same in all 
directions. After a numerical optimization procedure [29], we 
have selected the values μ = 0.4 and η = 0.7. 

Obviously, to evaluate the PSF in this case, it is more 
convenient to rewrite Eq. (12) in cylindrical coordinates. 
Moreover, by employing the analogy with the axial response 
of an imaging system with spherical aberration, the 
amplitude PSF is 

h ' r;z( ) = p ρ( )exp i2πw20ρ 2( ) J0
2πrmax

λ f
ρr

⎛
⎝⎜

⎞
⎠⎟

ρ d ρ
0

1

∫ , (6) 

where ρ = rp / rmax  and the defocus coefficient is defined as 

 w20 = − rmax
2 z

2λ f 2 .    (7) 

 
 

 

Fig. 4. Structure of the optimized shaded ring filter, called the defocus 
tolerance filter, which increases the depth-of-field. The two construction 
parameters are μ = 0.4 and η = 0.7. 
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Fig. 5. Conceptual experiment to demonstrate the extended field of view 
in a low numerical aperture imaging system. The defocus tolerance filter is 
placed at the front focal plane of L1. 

 
 

 
IV. EXPERIMENTAL VERIFICATION 
 

To demonstrate the effects of defocusing in a low-NA 
imaging system apodized with both the clear aperture and 
an optimum SR filter, which is referred to as defocus 
tolerance (DT) filter, we prepared the experimental setup 
shown in Fig. 5. The DT filter was fabricated with high-
contrast photographic film (Kodak Technical Pan; Roche-
ster, NY, USA). For the illumination of a USAF 1951 
resolution chart, we employed the diffused light procee-
ding from a white source. 

In the setup of Fig. 5, the imaging system was operated 
in telecentric mode and was composed of two converging 
lenses whose focal lengths were f1 = 400 mm and f2 = 100 
mm. According to this, the resolution test was placed at the 
front focal plane of L1. To capture the images, we used a 
CCD camera (JAI/Pulnix TM-765E; Copenhagen, Den-
mark) composed of 765 × 578 square pixels of 11 μm on 
each side.  

In our experiment we recorded a set of 2D images at 
different axial positions, z. For simplicity, it is convenient to 
mount the CCD on a micrometric translation stage to 
provide a high-precision at different axial positions. 
Specifically, we selected z = 0, 2.75, 5.50, and 8.25 mm, 
which, according to Eq. (16), correspond to defocus 
coefficients of w20 = 0, -1, -2, and -3. Note that, theoretically, 
the PSF is symmetrical about the focal plane, so that we do 
not consider positive defocus parameters because we 
assume that we would obtain similar results. 

In Figs. 6 and 7 we show the numerical and experimental 
results of the resolution target with the circular aperture and 
the DT filter. Clearly, the similarity between the exper-
imental and calculated results is apparent. These figures also 
indicate that the greater the defocus coefficient, the smaller 
response of the clear aperture. Note that we cannot discern 
the low frequencies in the elements 1 and 2 of group 0 (1 
and 2 LP/mm, respectively) for w20 = -3. However, the 

response of the DT filter remains fairly stable and for w20 

= -3 it is possible to detect frequencies of 2.52 LP/mm 
corresponding to element 3 of group 1. Another fact to 
consider, in the case of a non-apodized system (left row of 
Fig. 7), is the contrast inversion in several elements of the 
test group 1 for w20 = -2. 

Finally, to demonstrate the experimental case of high-NA, 
we arranged the experimental setup schematized in Fig. 8; 
this arrangement corresponds to a conventional scanning 
microscope. For this experiment, the light emerging from 
a fiber coupled to a He-Ne laser (λ = 632.8 nm) was 
collimated through a converging lens of focal length fL1 = 
200 mm. After passing through a relay system and a beam-
splitter, the wave field was focused via a microscope 
objective, whose NA was 0.9, onto the sample.  

 

 
(a) Clear aperture               (b) DT filter 

Fig. 6. Numerically-evaluated results corresponding to (a) the clear 
aperture and (b) the defocus tolerance (DT) filter for different values of the 
defocus coefficient w20. As shown in the right column, the improvement 
with the depth-of-field is apparent. 
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The signal reflected by the sample was finally focused 
onto a pinhole of radius of 50 μm. 

 
 

 
(a) Clear aperture               (b) DT filter 

Fig. 7. Experimental results of a resolution chart corresponding to (a) 
the clear aperture and (b) the defocus tolerance (DT) filter. It is clear that 
the response of the DT filter remains fairly stable, and it is possible to 
detect higher frequencies with it. 
 
 

 

Fig. 8. Schematic layout of practical implementation of a conventional 
scanning microscope. The special feature of such an arrangement is the 
insertion of a relay system, which makes possible the introduction of an 
apodized filter. 

 
(a) Clear aperture            (b) DT filter 

Fig. 9. Experimental verification of an extended depth-of-field for a high 
numerical aperture scanning microscope. For the measurement, we used 
the tracks on a CD as the object. (a) Clear aperture, (b) the defocus 
tolerance (DT) filter. 

 
 
We have carefully chosen the radius of the pinhole given 

that the detection was not confocal [30-33]. The pinhole was 
placed in front of a detector; in our case, it was a photo-
multiplier tube. A small fragment of an original music CD 
was imaged. This object was composed of a collection of 
tracks recorded on the CD. 

Our goal was to increase the DOF. This task can be 
accomplished by modifying the exit pupil with the use of a 
DT filter. For this purpose, we used a relay system set up 
from RL1 (fRL1 = 200 mm) and RL2 (fRL2 = 175 mm). 

In Fig. 9, we show the experimental results. In this case, 
an increase in one unit in w20 value corresponds to an axial 
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displacement of z = 1.12 μm. Again we can see that the DT 
filter provides very stable behavior as the defocus parameter 
increases. The DT filter significantly improves the image 
quality from values superior to -2. 
 
 
V. CONCLUSIONS 

 
In summary, in this work it has been shown that the DOF 

has been increased in an imaging system affected by 
spherical aberration. This result opens the way to reducing 
the defocus in an imaging system by using an amplitude 
filter designed firstly to reduce spherical aberration. The 
improvement of DOF has been checked with an optimized 
SR filter (called a DT filter), which has been implemented 
in two types of experimental architecture. It should be noted 
that in both experiments, the DT filter provides very stable 
behavior compared to the clear aperture. 
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