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ABSTRACT   

In this keynote address paper, we present an overview of our previously published work on using compressive sensing in 
multi-dimensional imaging. We shall examine a variety of multi dimensional imaging approaches and applications, 
including 3D multi modal imaging integrated with polarimetric and multi spectral imaging, integral imaging and digital 
holography. This Keynote Address paper is an overview of our previously reported work on 3D imaging with 
compressive sensing. 
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1. PRINCIPLES AND PERFORMANCE ANALYSIS OF INTEGRAL IMAGING  
Stereoscopic and auto-stereoscopic 3D display technologies are based on the use of special glasses [1-4] or monitors [5-
8] that in both cases send slightly different images to the left and to the right eyes to produce binocular disparity. All of 
these techniques have an essential problem, i. e., the conflict between eye accommodation and convergence of the visual 
axes. As a result, visual fatigue and sometimes strong feelings of discomfort occur [9]-[10]. 

A very interesting alternative proposal comes from a technique called Integral Photography, conceived by Gabriel Lippmann 
in 1908 [11]. It is based on the idea that it is possible to record a 3D image of a scene taking many pictures of it from different 
perspectives. This can be done on a macroscopic scale using an array of cameras or, in a smaller scale, inserting a microlens 
array (MLA) in front of the optical sensor (see Figure 1). 

 
Figure 1.- Capture procedure in integral imaging.  
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The array of microlenses permits the acquisition of the 3D scene from many different perspectives. The individual images are 
usually named as elemental images. To avoid the overlapping between neighbor elemental images it is necessary the insertion 
of barriers between them. There is only one plane of the 3D scene, the conjugate plane, that produces sharp images onto the 
sensor. However, this blurring is usually negligible when compared with the size of the sensor pixels. Thus, in what follows 
we will consider that all parts of the 3D scene are captured sharply. To acquire enough 3D information it is necessary that any 
part of the scene be captured by many elemental images. 

This 3D information can be processed in many different ways to be used in many interesting applications. Now we 
concentrate in the original application reported by Lippmann. This idea is to project the integral image onto a 2D display 
placed in front of a microlens array. The display and the microlenses used in the display should be similar to the ones used in 
the acquisition, or could be scaled proportionally. As shown in Figure 2, the different perspectives are integrated into a 3D 
image. Contrary to what happens in the auto-stereoscopic screens, now there is a real reconstruction of the light structure 
produced by the original 3D scene. Given an object point, in the reconstruction the ray bundles produced by the pixels of the 
display intersect at the same position of the original object. Then, what the observer receives is a diverging ray beam totally 
equivalent to that produced by a real point source. In this case, there is concordance between the accommodation effort and 
the convergence. Naturally, although this concept is already centenary, it is only very recent the ability of technology to 
produce suitable microlens arrays, and systems to acquire, display, process and transmit this information [12]. 

 
Figure 2.- Display procedure in integral imaging.  

 
Over the last decade there has been a very active development of this technology, seeking to improve its performance 
resolution, visual angle, continuity of perspectives, or, among other applications, the ability to reconstruct 3D scenes, 3D 
shape recognition, or imaging under very low levels of illumination. In references [13]-[29] we summarize some of the most 
important contributions. 

The original Lippmann concept is based on the acquisition of many perspectives of a 3D scene by means of a multilens 
recording of a 3D scene. The proper selection of the acquisition parameters strongly depends on the application. For example, 
when the aim is the recording of elemental images intended for being displayed in an integral imaging monitor, one has to 
take into account that microlens pitch is the display resolution unit (DRU) in integral imaging displays [30]. Thus, for this 
kind of application a large number of elemental images with moderate number of pixels are required. 

It may happen that the 3D scene is far from the camera, so that the angular extension of the array of lenses, as seen from the 
center of the scene, is very small. In this case, a camera lens, also named as depth-control lens [31],[32], is necessary to image 
the reference plane of the far 3D scene onto the MLA. In that case, some parts of the 3D scene are imaged in front of the 
MLA and other parts behind the MLA. Since this capture modality, shown in Fig. 3, is essentially different from the one 
described above, it receives a specific name: the plenoptic camera [33]. 
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Figure 3.- Scheme of a plenoptic camera. The reference plane is conjugated with the MLA. 

 
Using the camera lens has the effect of transposing the resolution constraints [34]. Thus, in the plenoptic camera the MLA 
pitch determines the spatial resolution of reconstructed sections of the 3D scene. The angular resolution, or segmentation 
capacity of the 3D reconstruction, is restricted by the number of pixels per elemental image. From the captured elemental 
images one can calculate the so-called sub-images, or view-images, [35] by extracting and composing the pixels at the same 
local position in every elemental image.  

This direct pickup procedure is very useful because it allows the acquisition of the elemental images by use of only one 
sensor and after only one snapshot. The parallax obtained with it is determined by the angle subtended by the camera lens as 
seen from the center of the scene. The plenoptic images captured by this procedure can be very useful for the depth 
reconstruction of far scenes. Also, since plenoptic cameras record scenes that are in the close neighborhood of the MLA, the 
acquired elemental images are ready for direct display in an integral imaging monitor. 

Lenslet-based integral imaging systems suffer, however, from a limitation in the spatial resolution due to diffraction effects. 
(because lenslet-based integral imaging systems have a small numerical aperture). Three parameters come into play: the 
camera pixel size, the lenslet point spread function, and the lenslet depth of focus [36]. However, integral imaging can also be 
performed using a single 2D imaging sensor, scanning the aperture and capturing a discrete number of images over a large 
area. This approach is known as synthetic aperture integral imaging and overcomes some of the limitations of traditional 
lenslet-based integral imaging systems [37]. Other data capture approaches may be used as well. For example, see [38]. 

2. MULTIDIMENSIONAL COMPRESSIVE IMAGING 
Integral imaging is a good platform for compressive sensing (CS) to acquire multi-dimensional optical information, 
including depth, spectrum, polarization, etc., of a scene. Since an integral image presents a high degree of redundancy, 
this redundancy can be used to acquire additional information. For example, the modulation of the optical signal using 
different types of pupils and sparse random sampling with a filter array on the image sensor have been proposed and 
demonstrated to acquire this information [39-41]. The coding schemes are explained in the following where spectral 
imaging is used as an example.  

The first coding scheme for spectral integral imaging uses basically a spectral dispersion mechanism [39]. Different 
dispersers are located in the each element as shown in Fig. 4(a). The second coding scheme uses spectral filters to 
multiply the spectral datacube by different weight distributions in each element as shown in Fig. 4(b) [40]. The datacube 
is filtered with different pass/stop-bands. In the figure, multiple filters are located in front of each pupil to modulate the 
spectral bands. The third coding scheme is a pixel-wise color filter array on the image sensor. In this case, the datacube is 
sparsely and randomly sampled, as shown in Fig. 4(c). The sampling patterns in each element are different to reduce 
their redundancy [41]. 

Based on the third coding scheme, a multi-dimensional imaging system by using an integral imaging optics and an image 
sensor with randomly arranged pixel-wise filtering elements has been proposed in [41]. The imaging process of the entire 
system can be described as 
 
 =g Hf  (1) 
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Figure 6 Multi-dimensional image reconstructions by using (a) a conventional back-projection algorithm and (b) the TwIST 

algorithm from the compressive spectral and polarimetric integral imaging data. 
 

3. COMPRESSIVE DIGITAL HOLOGRAPHIC SENSING 
Compressive sensing has been recently and successfully combined with digital holography, yielding new applications 
and solutions to classical holographic imaging problems. A review of such applications can be found in [45].  

Digital holography applications using compressive sensing paradigm tools can be divided coarsely into three scenarios, 
corresponding to three subsampling schemes. The first one is random subsampling of the Fresnel field. Suppose that we 
wish to capture only M spatial measurements of the Fresnel field. For instance, in order to design a system where our 
detector budget is constrained to M detectors and the signal we need to reconstruct consists of N samples, but it only has 
S meaningful entries. It is shown in [46] that a signal can be accurately reconstructed if the number of compressive 
samples, M, obeys: 

 
2 2

2

log
,

log

F
SCN N for z N
NM

CS N for z N

λ

λ

⎧ ≤ Δ⎪≥ ⎨
⎪ > Δ⎩

 (3) 

where ( )FN N zλ= Δ denotes the recording device Fresnel number, Δ is the pixel size, λ is the wavelength, z is the 
distance between the recording device and the object planes, N is the number of pixels and C is a small numerical 
constant. This first inequality in Eq. (3), referring to the near field numerical approximation ( 2 /z N λ≤ Δ ) [47], 
expresses the intuitively expected dependence of the number of samples on the physical properties of the sensor, on the 
wavelength of the light and on the reconstruction distance. As for the far field ( 2 /z N λ> Δ ) numerical approximation 
in the second inequality in Eq.(3), the number of compressive samples is constant for every z and is the same as the 
results obtained from random subsampling of Fourier transform sensing mechanism [48].  

The second subsampling scheme corresponds to deterministic subsampling, which may be the most suitable in many 
physical scenarios where the object’s wavefront is partially distorted by, for example, an occluding media, finite aperture 
of a lens or turbid media. After passing through this media, the wavefront is distorted and details are considered to be 
lost, when employing classical arguments.  It was shown in [49] that the forward sensing model of this problem can be 
described as a deterministic subsampling of the object’s Fresnel wave propagation. Therefore, object reconstruction 
guarantees may be formulated using tools developed in CS theory. In [49] authors showed that the number of sparse 
features, S, which can be accurately reconstructed, is given by: 
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This result formulates the reconstruction guarantees for performing object tomography of a 3D object from its 2D 
recorded hologram, and in some cases predicts object reconstruction accuracy beyond standard diffraction limits [52].  

4. MULTISPECTRAL INTEGRAL IMAGING 
Integration of spectral information into 3D systems has applications in many fields, including detection of illnesses [53], 
and remote sensing, among others. A multispectral integral imaging system is proposed in [54]. This system consists of a 
Marlin F080B model camera, whose CCD sensor size is 4.80×3.62mm (and the image size is 1032×778 pixels) and a 
Liquid Crystal Tunable Filter (LCTF) which can acquire a maximum of 33 bands in the [400,720]nm spectral range, with 
a spectral resolution of 10nm. A zoom lens is screwed to the rear part of the filter, and a makro system is used between 
the filter and the camera. A fiber optic illumination system (halogen lamp) with a diffuser is also used. See Figure 8 for 
details.  

 
Figure 8.- Multispectral integral imaging acquisition experimental set-up. 

 
Figure 9.- 3D profile of the 3 dice scene for λ =550nm 

 

Moving the scene to be acquired into a series of positions of the grid and moving the camera in an array of positions 
have an equivalent effect. Due to the weight of the optical acquisition system and the specifications of the motors, the 
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scene was finally moved in a regular 11×11 grid. Only 7 wavelengths spanning the ሾ480, 680ሿ nm wavelength interval 
were considered, due to the limitation of the integration times. Figure 9 shows the corresponding 3D profile of the dice 
scene that can be seen in Figure 8, for ߣ = 550nm. This profile is obtained by applying a depth variance minimization 
method originally proposed in [55]. The z axis represents the distance (in mm) from the acquisition system to the objects 
that define the scene. The x and y axes represent the lateral pixels of the scene. We can infer from the 3D profile that 
each plane corresponding to closest face of each dice is at a different and well defined distance.  

5. CONCLUSIONS 
In this paper we have presented an overview of some of our previously reported research that involve the application of 
compressive sensing in multi-dimensional imaging, in particular, 3D multi modal imaging integrated with polarimetric 
and multi spectral imaging, integral imaging, and digital holography. The results are also presented to highlight the 
potential applications and future research lines that could be derived from them. 
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