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The utilization of microscope objectives (MOs) in digital holographic microscopy (DHM) has associated
effects that are not present in conventional optical microscopy. The remaining phase curvature, which
can ruin the quantitative phase imaging, is the most evident and analyzed. As phase imaging is consid-
ered, this interest has made possible the development of different methods of overcoming its undesired
consequences. Additionally to the effects in phase imaging, there exist a set of less obvious conditions that
have to be accounted for as MOs are utilized in DHM to achieve diffraction-limit operation. These con-
ditions have to be considered even in the case in which only amplitude or intensity imaging is of interest.
In this paper, a thorough analysis of the physical parameters that control the appropriate utilization of
MOs in DHM is presented. A regular DHM system is theoretically modeled on the basis of the imaging
theory. The Fourier spectrum of the recorded hologram is analyzed to evaluate the performance of the
DHM. A set of the criteria that consider the microscope features and the recording parameters to achieve
DHM operation at the diffraction limit is derived. Numerical modeling and experimental results are
shown to validate our findings. © 2014 Optical Society of America
OCIS codes: (090.1995) Digital holography; (110.0180) Microscopy; (110.2990) Image formation

theory; (260.1960) Diffraction theory.
http://dx.doi.org/10.1364/AO.53.002058

1. Introduction

Digital holographic microscopy (DHM) has become a
technique utilized widely for sample inspection,
having many applications in different fields of
science and technology. The capability for recovering
the complex amplitude distribution scattered by the
sample permits a postacquisition numerical refocus
and a quantitative measurement of the sample
phase. These are two of the features that make

DHM a very versatile microscopy technique. With
the benefit of such special characteristics, DHM
is used for particle tracking [1], microelectromechan-
ical systems (MEMS) characterization [2], and
biological-samples inspection [3–5], among many
other applications. The standard DHM system is
based on a Mach–Zehnder interferometer that can
be configured for operating in transmission or reflec-
tion modes, working in either the in-line or off-axis
architecture.

When considering off-axis DHM, the approach to
recover the complex amplitude distribution scattered
by the specimen should include the following steps:
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a method to eliminate the twin image and the zero
diffraction order, a numerical reference calculation,
a refocusing algorithm, and, typically, a numerical
phase masking in order to compensate the spherical
phase distortion induced by the microscope objective
(MO) [6]. The problem of the spherical phase intro-
duced by the MO has been treated in terms of the
phase retrieval in quantitative phase-contrast imag-
ing (QPI). This remaining phase has unwanted ef-
fects not only in the retrieved phase of the sample
but also in the conditions of recording of the digital
hologram to achieve diffraction-limited DHM. Many
works have been performed in recent years in order
to compensate this phase factor, both numerically
and physically [3,6–14]. Computational methods are
widespread and commonly used for compensating
the all the defects introduced by the optical compo-
nents in DHM systems [6,8–10,12]. For instance,
in the case of the spherical distortion introduced by
the imaging system, different numerical approaches
eliminate that nuisance in the last step of the
reconstruction process. In spite of the correction pro-
duced in the phase images, those methods cannot
avoid the fact that such phase curvature is physically
present in the imaging system during the recording
process. As we show in this paper, that presence in
the recording stage produces ruining effects that can-
not be removed by computational methods. Some
physical architectures permit us to minimize or even
eliminate the phase curvature introduced by the im-
aging system in DHM. They reduce the number of
calculations required in the reconstruction process,
and they avoid the presence of quadratic phase factor
in the recording stage [11,13,14]. An imaging system
formed by an infinity-corrected MO in an afocal-
telecentric configuration with a tube lens (TL) produ-
ces directly a plane wavefront in the object arm
[11,13,14]. Another method is based on the utiliza-
tion of the same spherical phase in the reference
wave [3], by introducing an identical MO in the cor-
responding arm of the microscope. Additionally,
other physical configurations, such as the use of
liquid crystals, deformable mirrors, or a composite of
lenses producing a plane wave in the object arm, can
be used for avoiding the effect of the spherical phase
factor.

The ruining effects that are present in the record-
ing stage and cannot be removed by means of compu-
tational tools are analyzed in this work. A set of
necessary physical conditions for the recording
process in order to obtain the best quality possible
in the reconstruction process is also given. Further-
more, we get the conditions over the microscope
parameters [numerical aperture (NA) and magnify-
ing factor] that must be accomplished in order to
maintain a diffraction-limited image throughout
the reconstruction stage.

Many works have studied the performance of off-
axis digital holography [15–19]. As our DHM micro-
scope operates in off-axis architecture, the conditions
established in those works are assumed in our

design. Some of the extra features added by the
use of the MO in off-axis DHM have also been ana-
lyzed [4,20]. The former work analyzes the conditions
that must be fulfilled to have high-resolution DHM
as the holograms are reconstructed via the discrete
Fresnel transform. The authors establish the re-
quired distances of recording for optimization of
the lateral resolution. In the latter, the authors stud-
ied the spatial resolution and depth of field of the
DHM as a function of the recording distance and also
established a set of experimental conditions that
help to optimize the performance of the DHM.

To contribute to the use of off-axis DHM, in this
work we analyze the physical parameters that
determine the diffraction-limited performance of
this microscopy method. Our analysis considers the
effects of the phase curvature of the imaging system
on the amplitude contrast imaging. We focus on the
derivation of a set of conditions that could be used as
a map of the route to designing an off-axis DHM
operating at the diffraction limit.

2. Complete Model for Off-Axis DHM

In this section we present a complete model for
off-axis DHM. The model includes the imaging proc-
ess and its effects in the hologram recording
reconstruction. We analyze the consequences of the
phase curvature induced by the MO, first in the im-
aging process and then in the hologram recording
reconstruction. To this aim, we consider a regular im-
aging microscope formed by an infinity-corrected MO
and a TL; see Fig. 1. We will see that varying the dis-
tance between the MO and the TL can change the
curvature of the remaining wavefront. The case of
a finite-corrected MO can be deduced as a particular
case of our general formalism.

Fig. 1. Scheme of the off-axis DHM setup in transmission mode
used in this work.
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A. Imaging Objects with Complex Amplitude
Transmittance

The first step needed for the correct hologram record-
ing is to obtain an enlarged, high-resolution, image of
the microscopic specimen. In order to perform this
task a conventional optical microscope is necessary,
which is composed by the arrangement of a MO and a
TL separated by a distance d, as illustrated in Fig. 1.
In the following, we assume that the aperture stop
p�x� of the MO is placed at its back focal plane
(BFP). Let us place a given plane object with complex
amplitude transmittanceO�x� in the front focal plane
(FFP) of the MO. The amplitude distribution of the
optical wavefield at the pupil plane is given by [21]

Up�x� � exp�i2kfMO�
−i

λfMO

~O
�

x
λfMO

�
p�x�; (1)

λ being the wavelength of the illumination light,
fMO the focal length of the MO in the image space,
~O�� the Fourier transform of the object amplitude
transmittance, and x � �x; y� the transverse coordi-
nates. For MOs with low NA, the propagation from
the aperture plane can be accurately evaluated by
use of the paraxial Fresnel diffraction integral. Using
this formalism, it is possible to obtain a wavefield in
the BFP of the TL; that is,

U 0�x�� −1

λ2fMOf TL
exp�ikL0�exp

�
ik
1−d∕f TL
2f TL

�jxj2�
�

×
ZZ

R2
dx ~O

�
x0

λfMO

�
p�x0�exp

�
−i

2π
λf TL

�x0x�
�
; (2)

where L0 � 2fMO � d� f TL.
Note that in the normal operation of an optical mi-

croscope equipped with an infinity-corrected MO, the
object is placed at the FFP of the MO, and therefore
the image appears at the BFP of the TL. For that rea-
son, we name the later plane the image plane;
see Fig. 1.

By using now the convolution theorem, the com-
plex amplitude distribution outgoing from the sys-
tem can be written as

U 0�x� � 1
M

exp�ikL0� exp
�
ik
2C

jxj2
�

×
�
O
�
x
M

�
⊗ ~p

�
x

λf TL

��
; (3)

C � f 2TL∕�f TL − d� being the radius of curvature of
the spherical wavefront, and M � −f TL∕fMO the lat-
eral magnification of the optical microscope.

It is worth noting that in conventional light
microscopy, that is, when just the irradiance is cap-
tured, the multiplying spherical phase factor has no
effect on the imaging process. However, that phase
factor has a strong incidence in the performance of
DHM, as will be analyzed in the following sections.

B. Hologram Recording

For recording a digital hologram in the off-axis archi-
tecture, the digital camera is placed at a distance z
from the image plane. Then, the interference between
the propagated field of the object wave U 0�x� and a
tilted plane reference wavefield is recorded. The dig-
ital hologram in the recording plane is given by

Iz�x� � jUz�x�j2 � jR�x�j2 �Uz�x�R��x� �U�
z �x�R�x�;

(4)

where � represents the complex conjugate. R�x� �
exp�i�k · x�� is the reference plane wave, in which
k � �kx; ky� is the wavevector, and

Uz�x� �
i
λz

exp�ikz�U 0�x� ⊗ exp
�
ik
2z

jxj2
�
: (5)

is the free-space propagated object wave.
The digital hologram, Eq. (4), is composed of four

terms that encode the information of interest. For
simplicity, we do not consider explicitly the discreti-
zation effects, but they will be accounted for in follow-
ing sections. In off-axis DHM the digital hologram
must be recorded such that the four terms can be iso-
lated. This process, called Fourier filtering [21], is
only possible if the wavevector k � �kx; ky� produces
enough lateral shifting. This shifting must be evalu-
ated in the spectral domain. To this end we calculate
the Fourier transform of the digital hologram, which
is given by

~Iz�u� � DC�u� � ~Uz�u� ⊗ δ�u� k� � ~U�
z �u� ⊗ δ�u − k�;

(6)

where

DC�u� � IfjUz�x�j2 � jR�x�j2g (7)

is the zero-order diffraction term (usually named the
DC term), with I denoting the Fourier transform.
This term is placed, of course, at the center of the
spectrum.

The other two terms ~Uz�u� ⊗ δ�u� k� and ~U�
z �u� ⊗

δ�u − k� exhibit a displacement proportional to the
wavevector k; these terms are named the �1 and −1
diffraction orders, respectively [22].

The direction of the wavevector also controls the
spatial frequency of the digital hologram. In the
forthcoming analysis we consider that the maximum
spatial frequency of the digital hologram fulfills the
Nyquist requirements [22]. This condition dictates
the maximum angle, ϕmax, that can exist between
the known reference wave and the object wave
[15,16,18], namely,

ϕmax �
λ

2Δp
; (8)

with Δp the pixel size of the digital camera.
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Initially, we assume that the shifting introduced by
k is enough to isolate the�1 term from the others. In
such a case we can focus our study on that term. This
term can be written as

~Uz�u� � ~U 0�u� exp�−iπλzjuj2�; (9)

where some irrelevant constants have been omitted.
As can be seen, the propagation distance z affects
only the phase of the term. The Fourier transform
in the image plane of the object wave is given by

~U 0�u� � �exp�−iπλCjuj2� ⊗ f ~O�Mu�p�λf TLu�g�: (10)

As we will see in the next section, the curvature of
the remaining spherical wavefront, C−1, affects not
only the shape but also the size of the diffraction or-
der. This will influence the capacity of isolating the
orders, and therefore the final resolution limit
achievable after the rendering process.

C. Effects of the Phase Curvature on the Spatial Filtering
of the Hologram

In off-axis DHM the sample information is encoded
in the �1 and −1 diffraction orders. This feature
imposes the need for separating them from the DC
diffraction order. That separation is done with the
proper angle of the k vector, namely the angle be-
tween the reference and the object waves. The
spreading of the �1 diffraction orders limits the uti-
lization of the space bandwidth of the hologram.
For this reason it is necessary to study how the
design of the optical arrangement influences the
shape and the size of those terms.

1. Limit Case C → ∞ : Telecentric Mode
Let us consider the case in which the radius of cur-
vature, C, of the remaining wavefront approaches to
infinity, that is, when a plane wave comes out from
the microscope. In such a case,

DC�u� � δ�u� � f ~O�Mu�p�λf 2u�g ⊗ f ~O�Mu�p�λf 2u�g�;
(11)

and

~Uz�u; C → ∞� � f ~O�Mu�p�λf 2u�g exp�−iπλzjuj2�: (12)

From Eq. (11) one can note that the size and shape of
the DC term do not depend on the curvature C. Its
size is twice the size of the pupil of the imaging sys-
tem, since it is given by its autocorrelation [17,18].

At this point we can establish the conditions that
optimized the utilization of the MO by making the
best use of the space bandwidth. To this aim we con-
sider a circular pupil function of r radius measured in
the pupil plane. Mathematically, the pupil function
appearing in the Fourier space is

p�λf TLu� � circ
�
λf TL
r

juj
�
: (13)

The radius of the pupil function in the Fourier space
is ρ � r∕�λf TL�. The radius of the pupil written as a
function of NA and lateral magnification of the MO is
ρ � NA∕�λM� [23]. From the consideration of this
size, we can select the appropriate MO that can be
utilized in a particular DHM setup, such that the
use of space bandwidth is optimized.

Let us consider the space-bandwidth product of a
square camera with N ×N pixels of (Δp, Δp) of size.
The solid lines in Fig. 2 represent the borders of the
terms of the digital-hologram spectrum for the limit
case in which the maximum space bandwidth is
utilized to record the whole information of the wave-
field. This condition is accomplished when the imag-
ing system works in the telecentric mode (TM),
provided that the diagonal

D � 2ρTM
�
3�

���
2

p 	
: (14)

The sampling pitch in the Fourier domain is given by
the relationship Δu � 1∕�NΔp�; then the diagonal
size isD �

���
2

p
∕Δp. Taking into account these figures,

the radius of the pupil that optimized the use of the
space bandwidth for the TM is

ρTM ≤
1���

2
p 
 ���

2
p

� 3
�
Δp

; (15)

Fig. 2. Fourier transform of the digital hologram. The sizes and
shapes of diffraction orders are illustrated. The DC diffraction or-
der is placed at the center of the Fourier spectrum of the digital
hologram; its size indicates the achievable resolution of the
DHM. The shape and size of the �1 and −1 diffraction orders
are controlled by the value of the wavefront curvature C. The solid
lines correspond to the TM operation. The dotted/dashed lines are
both for the nontelecentric mode (NTM) with different values of C.
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which leads to

NA
M

≤
λ���

2
p 
 ���

2
p

� 3
�
Δp

: (16)

Equation (16) dictates limit values of the NA and the
magnification of the MO that can be used in an opti-
mized DHM operating in TM. Owing to this condition
being independent of the number of pixels, one can
conclude that the number of pixels determines only
the field of view (FOV) of the microscope. However
there exist a minimum number of pixels that need
to be taken, such that the Fourier transform of the
diffraction order can be recovered without distortion.
We have experimentally found that number of the
order of 128 pixels. From this rule of thumb one can
conclude that the minimum FOV in the object plane
equals 128Δp∕M.

The condition expressed by Eq. (16) assumes the
complete separation of the �1 and −1 diffraction or-
ders from the DC. As shown in Fig. 2, this separation
is achieved on the condition that jkTM;NTMj ≥ 3ρTM.
For a square digital sensor the optimized use of
the space bandwidth is obtained for kx � ky. For this
case we obtain

NA
M

≤
2

���
2

p
π

3
sin ϕ; (17)

where ϕ is the angle of inclination of the wavevector
with respect to the x and y axes, namely the angle
between the reference and object wave along the x
and y axes with respect to the direction of propaga-
tion. Equations (8) and (17) can be combined to con-
clude that the angle between the reference and object
waves must be

sin−1

�
3

2
���
2

p
π

NA
M

�
≤ ϕ ≤

λ

2Δp
: (18)

Whenever the condition states on Eqs. (16) and (18)
are met, the DHM operating in TM [11,13,14] can be
considered as diffraction limited because there is
enough space bandwidth in the Fourier domain for
filtering the �1 and −1 diffraction orders without
losing spatial frequencies or introducing noise pro-
ceeding from the DC diffraction order.

It should be pointed out that the usable space
bandwidth of the hologram can be further enhanced
by reducing the effect of the DC order bymeans of the
utilization of nonlinear filters [24]. This nonlinear
approach can extend the usable space bandwidth up
to NΔu∕2 along each direction. The trade-off for this
improvement is that the object amplitude must be
weak in comparison with the reference wave; namely
the method can be applied only for imaging weak
scatters. As the method we present in this work re-
sorts in a simple binary filter that matches the pupil
size in the reciprocal space, it has no restriction in
terms of the objects to be imaged.

2. Phase Curvature C Taking Any Value:
Nontelecentric Mode
Let us study the case in which the imaging system
operates in nontelecentric mode (NTM), so that C
can take any value. As can be seen from Eq. (11), nei-
ther the shape nor the size of the DC term is affected
by the phase curvature of the wavefront. However,
both the �1 and −1 diffraction orders are modified
by a convolution term that is dependent on C. As
can be read from Eq. (10), both orders can be under-
stood as diffraction patterns of the Fourier transform
of the image of the object. This behavior is somewhat
undesired inasmuch as it makes the spatial filtering
tougher and dependent on parameters such as the
pixel size, number of pixels, value of curvature of
the wavefront, and reconstruction distance.

To illustrate that difference, in Fig. 3 we show the
Fourier transform of modeled digital holograms re-
corded for two different values of C. While Fig. 3(a)
shows the spectrum of a digital hologram of a USAF
test target recorded in the TM, Fig. 3(b) shows the
corresponding spectrum for C � 266 mm, NTM.
For the TM the�1 terms are fitted inside circles with
radii equal to the telecentric pupil ρTM. However, in
the NTM those terms are bounded by the squares;
see Fig. 3(b). All the simulations and computations
were done using MATLAB.

That difference in the behavior of the diffraction
orders of the digital-hologram spectrum makes it
necessary to study how their size changes with the
value of C. One can consider that the maximum
spread of �1 and −1 diffraction orders occurs within
a window with a size given by the propagation of the
central pixel of the spectrum, which is the most dif-
fractive element in the spectrum. The elementary
central pixel in the Fourier domain can be written
as rect�u∕Δu�. Then, introducing this term into
Eq. (9) and expanding the convolution operation,
we obtain

~Uz�u� � exp�−iπλ�C� z�juj2�
× I�rect�u0∕Δu� exp �−iπλCju0j2��u0�λCu: (19)

The spreading of the diffraction order can be com-
puted by evaluating the change of scale implicit in

Fig. 3. Spectrum of modeled digital holograms of a USAF test
target for (a) telecentric mode, C → ∞, and (b) NTM, spherically
phase distorted case for C � 266 mm (d � 50 mm and
f TL � 200 mm). See text for further details.
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Eq. (19). This calculation is somehow equivalent to
the computation of the size of the zero order of
diffraction in numerical Fresnel propagation [25].
Taking into account the discretization and argument
of the exponential factor in front of the Fourier trans-
form, we obtain

Δu � N2Δp2�C� z�
λC2 Δu0: (20)

For simplicity, in following analysis we neglect zwith
respect to C, without forgetting that the larger z, the
lower the effect of C. Under the above approximation
one considers that the digital hologram is recorded in
a plane close enough to the image plane so that we
can use the angular spectrum [26] for its numerical
refocusing. By taking this approximation into ac-
count the magnifying factor Eq. (20) simplifies as

Δu � N2Δp2

λC
Δu0: (21)

We have verified the spreading of the �1 and −1 dif-
fraction orders by means of computer modeling and
experimental results. We simulate the spreading ac-
cording with Eq. (19) and the size predicted by the
magnifying factor Eq. (21), for different values of C.
In Fig. 4(a), while the dashed white lines represent
themagnifying factor, the gray cone-shaped intensity
in between them is the modulus of Eq. (19); this sim-
ulation was performed for the experimental param-
eters we have utilized, N � 1024, Δp � 6.9 μm, and
λ � 632.8 nm. For the experimental validation we
have recorded a set of digital holograms with no ob-
ject inserted for different values of C. The size of the
�1 diffraction order is plotted Fig. 4(b) as the curva-
ture varies. The values of those sizes have been fitted
in �NΔp�2∕�2λC� to plot the white dotted line in
Fig. 4(b). The theoretical value for the slope, taking
into account that we are measuring half of the
window, is 3.9496 × 104 mm. The measured slope for
the magnifying function is 3.94 × 104 mm, which
matches the theoretical value. In the fitting the cor-
relation coefficient was 0.996. From this result we
can state that the expansion of the �1 order due to

the presence of curvature in the object arm is ruled
by Eq. (21).

Owing to the size of the nonpropagated central
pixel is Δu0 � 1∕NΔp; from Eq. (21) the size of the
�1 and −1 diffraction orders varies as NΔp∕�λC�
along each side of the squares that bound them. The
square-shaped diffraction orders, with sides of the
above size, have to be fitted in the space bandwidth
with the circular DC term with no overlapping, as
illustrated in Fig. 2. In that figure the squares made
of nonsolid lines correspond to the�1 and −1 diffrac-
tion orders for the different values of C we consid-
ered. Three different values for C, namely three
squares with different sides, are analyzed. For deter-
mining the boundaries here presented, the reader
should considerer the size of the diffracted order
and match it with the corresponding ρTM illustrated
in Fig. 2:

(i) C ≥ �
���
2

p
NΔp∕2λρTM�. This value of C allows for

fitting the complete square diffraction order inside a
circle with radius ρTM; see the squares made of
dashed dotted lines in Fig. 2. This value of C
allows for maintaining the diffraction-limited perfor-
mance of the DHM at the same level as the TM
because ρNTM � ρTM.
(ii) �

���
2

p
NΔp∕2λρTM� > C ≥ �NΔp∕2λρTM�. As the

value of C diminishes, the DC diffraction order has
to shrink for allowing the fitting of the square diffrac-
tion orders; see the dotted circle and dotted squares
in Fig. 2. In this case the achievement of the diffrac-
tion-limited performance of the DHM imposes a
diminishing of the resolution of the microscope
in comparison with case (i); the new value for the
pupil of the microscope is ρNTM ≈ �

���
2

p
∕4Δp� −

�
���
2

p
NΔp − 2λC�, which after some direct algebra

can be shown to be smaller than that for the TM.
In the two former cases for the values of C, the

magnitude of the wavevector k remains equal to
its value in the TM. This means that the angle be-
tween the reference and object waves still fulfills
Eq. (18). However, as illustrated in Fig. 2, the wave-
front curvature can take even smaller values but
under the condition that the magnitude of the wave-
vector k diminishes to allow the fitting of the diffrac-
tion orders in the space bandwidth. Themagnitude of
the new wavevector k must be

jkNTMj ≤
���
2

p

2

�
1
Δp

−

NΔp
λC

�
: (22)

While Eq. (22) imposes the limit for the minimum an-
gle between the reference and object waves that
guarantees no overlapping of the diffraction orders,
Eq. (8) determines the maximum angle. If the value
of jkNTMj changes according with Eq. (22), the nonte-
lecentric DHM can operate at the range presented
in (iii).
(iii) C < �NΔp∕2λρTM�. As theC value is reduced fur-
ther from the value established in (ii), the DC diffrac-
tion order has to be shrunk to allow the fitting of the

Fig. 4. Spreading of the �1 diffraction orders as the value of C
changes. (a) shows the results from computer modeling. The exper-
imental results are shown in (b). The behavior is identical for the
−1 diffraction order.
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enlarged �1 and −1 diffraction orders. As mentioned
above the angle between the reference and object
waves has to be smaller in comparison with that
for the TM. The new allowable value for the pupil
of the DHM is ρNTM ≤ �

���
2

p
∕4Δp� − �

���
2

p
NΔp∕2λC�,

which is quite smaller than ρTM.

In summary, the diffraction-limit performance of
the DHM can be achieved whatever wavefront curva-
ture is chosen for the object wave, provided that the
proper spatial filtering of the DC,�1, and −1 diffrac-
tion orders is possible. However, the reader must
be aware that the higher the value of C, the better
the resolution of the microscope. To make possible
the proper spatial filtering, no overlapping of the
diffraction orders has to be guaranteed. In the case
in which the orders are overlapped, the �1 and −1
diffraction orders cannot be isolated completely from
the DC diffraction order, which introduces noises and
contrast variations in the reconstructed holograms.

According with (i), (ii), and (iii), once one has
chosen a digital camera and wavelength, there is a
tight dependence of the radius of the usable pupil
of the microscope with the curvature the object wave-
front C, namely with the achievable resolution of the
DHM. For a better illustration of this dependence, in
Fig. 5 we have plotted the ratio ρNTM∕ρTM as a func-
tion of 1∕C. We have utilized for this numerical
model λ � 632.8 nm, because this is the wavelength
that we have utilized in our experiment. The set of
pair values, pixel size, and number of pixels, shown
in Fig. 5, has been chosen to consider the utilization
of diverse digital cameras commercially available.

From Fig. 5, one can conclude that the resolution of
the telecentric and nontelecentric DHM coincides for
a threshold value of 1∕C. We can as well conclude
that as the extension of the digital recording in-
creases, the value of C for which the telecentric and
nontelecentric DHM have the same resolution also
increases. In particular, for the camera utilized in
this work, N � 1024 and Δp � 6.9 μm, the threshold
up to which both modes operate at the same resolu-
tion is 1∕C � 0.0022 mm−1. For larger values of
1∕C the nontelecentric DHM exhibits a lower resolu-
tion than the telecentric DHM, if one is interested in
having no overlapping of the diffraction orders such

that any perturbation of the reconstructed image is
avoided. This condition is illustrated in the following
section with experimental results.

3. Design Example

The results presented above for operating a DHM at
the resolution limit have been utilized for validating
their usefulness. The light from a He–Ne laser is uti-
lized for building the setup illustrated in Fig. 1. The
chosen camera is a 1024 × 1024 pixel CCD technol-
ogy from the company IDS-Imaging. Each square
pixel has a 6.9 μm side, which renders it to a maxi-
mum angle between the reference and object waves
[Eq. (8)] of about 3°. From Eq. (16), for the TM the
characteristics of the MO must meet the condi-
tion NA∕M � 0.0147. To validate these figures, we
started using a low-NAMO that permits the imaging
of a negative 1951 USAF resolution target at the
diffraction limit. We have chosen a 2.5x∕0.075 MO
for which NA∕M � 0.015.

In the setup of Fig. 1 we have inserted a variable
aperture to control the size of the effective pupil of
the imaging system; the control of the pupil allows
for achieving the conditions imposed in the above
paragraphs for operating the DHM at the diffraction
limit with no overlapping of the diffraction orders.
The Fourier spectra of the recorded holograms along
with the corresponding reconstructed images are
shown in Fig. 6. In Fig. 6(a) the DHM is tuned to op-
erate in TM. For this mode the size of the pupil in the
real space is of the order of 5 mm. In this configura-
tion the object wavefront is essentially a plane wave,
C → α. For this setup, as shown in Fig. 6(a), right-
hand side, the resolution of the system reaches up
to element 2 of group 6 (71.8 lp∕mm) in the test tar-
get. When the DHM operates in NTM, the size of
the�1 and −1 diffraction orders rises and the DC dif-
fraction order has to be shrunk. This shrinking
means a reduction of the pupil size, which imposes
a lower resolution than that for the TM. Figures 6(b)
and 6(c) illustrate two situations in which DHM
operates in NTM. The foreseen diminishing of the
spatial resolution is illustrated clearly. In the images
at the right-hand side of Figs. 6(b) and 6(c), it is clear
that smallest resolved elements are 5 group 5
(50.8 lp∕mm) and 3 group 4 (20.16 lp∕mm), in that
order. For Fig. 6(b) the value of C � 333.3 mm; in
Fig. 6(c) C � 250 mm.

After validating the design parameters presented
above, a similar experiment to illustrate the condi-
tions of operation of DHM with biological samples
was also performed. In this case we imaged the object
by using a 10x∕0.45MO. A section of a sunflower leaf
was imaged with the DHM operating at the same
curvatures of the object wavefront that were utilized
in the experiment illustrated formerly. For the TM
the reconstructed image shows details that are no
longer visible or become fuzzy in the images for the
nontelecentric operation; see Figs. 7(a), 7(b), and 7(c),
in that order. The values of the curvature radio were
C � 333.3 mm for Fig. 7(b) and C � 250 mm for

Fig. 5. Variation of ρNTM∕ρTM as a function of 1∕C. The plot is
illustrated for λ � 632.8 nm and different numbers of pixels and
pixel sizes.

2064 APPLIED OPTICS / Vol. 53, No. 10 / 1 April 2014



Fig. 7(c). It is also clear that as the value of C de-
creases, the capability of the microscope to resolve
smaller details decreases too; namely the resolution
power of the microscope is reduced as the value of C
diminishes. The zoomed-in rectangular areas in
Fig. 7 are shown for validating the above sentences.
As can be seen, the shape of the sample strongly af-
fects the sharpness of the Fourier transform. In that
case the sample is mainly composed of low frequen-
cies. In consequence, the spreading of the spectrum
owing to the presence of the DC order is smoother
than in the case of the USAF test. Then the effect
due to the reduction of the pupil is not that critical
as in the case of using samples composed mostly of
high spatial frequencies. However, it is worthwhile
it to apply the optimal parameters to the design
for being sure that the system is providing the best
quality images independently of the sample.

The perfect fitting with no overlapping of the �1,
DC, and −1 diffraction orders in the available space
bandwidth allows for the appropriate spatial filter-
ing and reconstruction of the digital holograms. If
for the contrary there exists overlapping of the dif-
fraction orders, the performance of the DHM will de-
pend strongly on the characteristics of the sample

under study. For slightly diffractive samples, mini-
mum perturbations of the �1 and −1 diffraction or-
ders come from the DC order; hence minimum flaws
are visible in the reconstructed images. In the oppo-
site case, if the DC diffraction order introduces
strong distortions on the �1 and −1 diffraction or-
ders, the reconstructed images present important
distortions, especially in their contrast. A detailed
study of these effects is currently ongoing by our
group.

4. Conclusion

An analysis of the effects that the use of MOs has in
off-axis DHM has been presented. The analysis is
supported on the study of the Fourier spectrum of
the digital hologram recorded off-axis. For the record-
ing of the hologram, a tunable imaging system has
been utilized. The imaging system, composed of an
infinity-corrected MO and a TL, can be tuned to have
telecentric or nontelecentric recording of the holo-
gram. The results showed that the nontelecentric
DHM presents limitations in both quantitative
phase imaging and amplitude contrast imaging.
The former has been previously analyzed by ours
and many other groups. Then our study here is fo-
cused on amplitude contrast imaging exclusively.

Fig. 6. DHM operating at diffraction limit for different modes of
operation. Fourier spectrum of the recorded hologram at the left-
hand side and a zoomed view of the corresponding reconstruction
image at the right-hand side. (a) corresponds to TM. (b) and (c) are
for nontelecentric operation of the DHM.

Fig. 7. DHM operating at diffraction limit applied to a biological
sample. Fourier spectrum of the recorded hologram at the
left-hand side and the corresponding reconstruction image at
the right-hand side. (a) corresponds to TM. (b) and (c) are for
nontelecentric operation of the DHM.
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The presence of the residual curvature phase in the
nontelecentric imaging system imposes a set of con-
ditions that must be accounted for to minimize the
distortion of the reconstructed holograms. We have
found that the �1 terms in the Fourier spectrum
of the hologram broaden as a function of the inverse
of the curvature radius of the remaining phase factor.
This broadening reduces the possibilities of proper
spatial filtering of the DC term and twin image,
which deteriorate the hologram reconstruction.
From a thorough theoretical analysis we have de-
rived a set of criteria that maximize the use of MO
in off-axis DHM. These criteria have been tested to
show the validity of our findings. From these results
we can conclude that there is trade-off between the
optical imaging system utilized for the recording of
the hologram and the digital camera, which controls
the performance of the complete DHM. Following
these design criteria optimizes the use of MO in
off-axis DHM.
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