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Fuzzy Integral Imaging Camera Calibration for Real
Scale 3D Reconstructions

Hector Navarro, Radu Orghidan, Mihaela Gordan, Genaro Saavedra, and Manuel Martinez-Corral

Abstract—In this paper, we present a quantitative analysis of
the error in the reconstruction of a 3D scene which has been cap-
tured with Synthetic Aperture Integral Imaging system. The 3D
information is obtained from 2D images for which the camera pa-
rameters are unknown. The model used for calibrating the Inte-
gral Imaging camera setup is based on fuzzy systems. These sys-
tems provide the opportunity for modeling of conditions which are
inherently imprecisely defined. We demonstrate that the error in
the 3D reconstruction not only depends on the number of cameras,
but also to their relative positions. Our model is applied to a set
of images captured experimentally from a real object. A true-color
real scale 3D reconstruction is successfully achieved.

Index Terms—Camera calibration, fuzzy system, integral
imaging, 3D reconstruction.

I. INTRODUCTION

I NTEGRAL IMAGING (InI) is a 3D imaging technique that
belongs to a broad class of multiview imaging systems. InI

was initially proposed by Lippmann in 1908 under the name
of Integral Photography [1]. Lippmann’s technique consists of
recording a set of 2D images, usually named as Elemental Im-
ages (EIs), from different perspectives to capture the spatio-an-
gular information of a 3D scene. This can be done by inserting
a microlens array in front of a light sensor or by using a camera
array [2]–[4]. To form a particular perspective, each point be-
longing to the 3D scene is imaged onto the light sensor of the
camera from a certain point of view. Note that although initially
intended to work with visible light, it can be applied to other
bands of the electromagnetic spectrum [5], [6].
Although InI can be also used to display 3D images, in this

work we focus our efforts in performing real scale computa-
tional reconstructions of 3D objects. In the past years some
methods have been proposed to perform volumetric reconstruc-
tion of 3D scenes and to obtain views from arbitrary direc-
tions [7]–[9]. The method proposed by Hong et al. in [10] is
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the most commonly used for computer reconstructions with InI.
According to this method, in the reconstruction stage, each per-
spective is directly projected through a virtual pinhole array to
reconstruct the 3D scene by superposition, conforming to ge-
ometrical optics. In order to minimize the error in the recon-
structions, it is indispensable that the system is perfectly aligned
during the pickup stage, or alternatively, it is necessary to carry
out a calibration process. Some theoretical studies have ana-
lyzed the effects of the positional errors and positional uncer-
tainty in InI systems [11], [12]. Two types of calibration proce-
dures have been proposed: On the one hand, in explicit camera
calibration, the calibration process ends up with a set of physical
parameters of the camera. On the other hand, implicit calibration
provides a set of rules that emulates the camera behavior without
actually knowing the camera parameters. Explicit camera cali-
brations procedures have been previously applied to InI camera
systems [13], [14], but to the best of our knowledge, implicit
camera calibrations have never been applied to these systems.
Orghidan et al. [15], have shown that the 3D reconstruction
error achieved is drastically reduced by using a fuzzy calibra-
tion model but applied to a single stereo pair. Our intention here
is to extend this technique to multiview InI.
In fact, to design an InI system, it is crucial studying the op-

timal configuration that minimizes the resources needed for its
implementation. For building a camera array system, it is nec-
essary to decide the minimum number of cameras needed to
achieve the optimal trade-off between the accuracy of the 3D
reconstructions and the economic investment made. Likewise,
when using a Synthetic Aperture InI system (SAII) [16], it is
elementary to reduce the number of movements of the camera.
This saves time and diminishes the amount of data, shortening
the computing time.
Thus, in this paper we study the performance of a SAII system

calibrated using an implicit method based on fuzzy systems.
The accuracy of the reconstruction is tested depending on the
number of cameras employed in the pickup process. An optimal
solution for the arrangement and the number of cameras neces-
sary tominimize the error in the 3D reconstructions is presented.
The paper is organized as follows. In Section II we present

the principles of a fuzzy inference system and the InI calibra-
tion scheme based on it. Section III describes the experimental
setup employed for the calibration process. In Section IV we
apply the calibrated InI system to reconstruct a real scale 3D ob-
ject including color and texture. Finally, in Section V the main
achievements of this paper are summarized.

II. INI CALIBRATION USING FUZZY SYSTEMS

The purpose of the calibration process is to establish a set of
rules that allow obtaining the 3D coordinates of a point from its
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Fig. 1. Array on cameras capturing a cloud of points whose 3D coordinates are known.

2D images captured in a multiview imaging system. To do this,
we first need to generate a 3D point cloud whose positions are
accurately known. Then, an array of regularly spaced
cameras, placed at fixed positions, captures different perspec-
tives of the points in the cloud.
Then, wemust find the points in one image which can be iden-

tified as the same points in the other images. As we are using
a regular array, the correspondence problem is easily solved.
Once the correspondences are known, each 3D point of the
cloud is associated with its corresponding 2D coordinates over
the sensors. This information is all we need to perform the InI
camera calibration. No information on the position of the cam-
eras or on their internal parameters will be necessary.
We will employ the method proposed in [15], where a Sugeno

Fuzzy Inference System (FIS) is used for stereo calibration. A
FIS [17], [18] is a system that uses fuzzy set theory to map
inputs to outputs. It uses a set of rules called fuzzy rules which
are a collection of linguistic statements that describe how the
FIS should make a decision regarding classifying an input or
controlling an output. In the simple case that there are only two
inputs and and one output , a typical rule in a Sugeno fuzzy
model has the form

(1)

where and are linear parameters for rule of a model
with rules. These parameters are determined during the
training process. The firing strength of each rule is computed as

(2)

where is a linguistic label and is the membership
function that specifies the degree to which the given satisfies
the quantifier . The final output of the system is the weighted
average of all rule outputs, computed as

(3)

When the normalized firing strength is defined as

(4)

Fig. 2. ANFIS architecture of a fuzzy system with two inputs and with two
rules.

There are several algorithms which can be used to automati-
cally optimize the Sugeno FIS. We decided to use the adaptive
neuro-fuzzy inference system (ANFIS) [19], which adapts the
parameters of the FIS using neural networks. It applies a com-
bination of the least-squares method and the backpropagation
gradient descent method for training FIS membership function
parameters to emulate a given training data set. For the sake of
simplicity, let us consider that the previously mentioned fuzzy
system with two inputs and one output has only fuzzy
rules. The corresponding equivalent ANFIS architecture can be
represented by the diagram in Fig. 2.
There are five layers of logic in the ANFIS model diagram. A

circle indicates a fixed node, whereas a square indicates an adap-
tive node. The first layer is the fuzzification layer. A clustering
algorithm will decide the initial number and type of member-
ship functions to be allocated to each of the input variable. In
the second layer each node calculates the firing strength of the
corresponding rule. The third layer calculates the ratio of every
rule’s firing strength to the sum of all rules firing strengths. The
output of this layer is directly the normalized firing strength ob-
tained in (4). The adaptive nodes in layer four perform two tasks:
the combination of the incoming rule antecedents and deter-
mining the degree to which they belong to the output linguistic
label. The number of nodes in this layer will be equal to the
number of rules. The fifth layer is the defuzzification layer. The
single node in this layer computes the overall output as the sum-
mation of all incoming signals.
For applying this technique to our reconstruction problem we

involve three fuzzy logic systems, one for each dimension of



NAVARRO et al.: FUZZY InI CAMERA CALIBRATION FOR REAL SCALE 3D RECONSTRUCTIONS 603

Fig. 3. Implicit camera calibration scheme based on our fuzzy model.

the 3D space. Each of these fuzzy logic systems takes as an
input the 2D coordinates of the corresponding points on each
EI. The outputs of the fuzzy systems are the coordinates of the
reconstructed points in the 3D space. The general block diagram
is shown in Fig. 3.
The mean 3D error, , obtained using the fuzzy calibration

system can be calculated as

(5)

where is the number of points in the cloud, and are
the Cartesian coordinates of a point estimated by the fuzzy
system and and are the Cartesian coordinates of such
point measured experimentally. Additionally, the mean error of
each Cartesian coordinate, and , can be computed as

(6)

III. EXPERIMENTAL SETUP

As stated in the previous section, for the calibration process it
is necessary to generate a 3D point cloud whose positions are ac-
curately known. To do this, we used a planar checkerboard pat-
tern. Checkerboard internal corners are defined as special con-
junction points of four alternating dark and bright regions. The
inner checkerboard corners define a grid of points which can
be automatically tracked. There is a wide range of existing al-
gorithms for detecting regular grids in the images of calibration
patterns. In our problemwe have used theHarris Corner detector

Fig. 4. SAII setup for capturing different perspectives of the checkerboard
pattern employed during the calibration process.

[20], which fits our needs perfectly. The checkerboard pattern
was composed of 21 15 squares of 20 mm 20 mm. It was
printed on adhesive vinyl and stuck on a foam board substrate.
The area covered by the grid was 420 mm 300 mm. Hereafter
we will refer to this checkerboard as “checkerboard A”.
For capturing the images of the checkerboard from different

perspectives, instead of using an array of cameras, we used
the SAII method (see Fig. 4). For a given distance of the
checkerboard to the camera, we captured a set of 3 2 EIs. The
pitch in the horizontal direction was 110 mm, and the pitch
in the vertical direction was 120 mm. Then, the checkerboard
was moved axially in steps of 10 mm for a total of 41 different
positions. For each axial position, a new set of 3 2 EIs was
captured. The grid of points consisting of the corners of the
squares of the checkerboard A defines a volume of dimensions
420 mm 300 mm 400 mm. This volume constitutes the
training volume of the fuzzy system.
From the captured images, we extracted the 2D positions of

the grid corners over the camera sensor for each camera position
and for each axial position of the pattern. These positions, to-
gether with the coordinates of the grid corners in the 3D space,
constitute the training set of input-output data that we use for
training the fuzzy system. After the training process, the fuzzy
system is able to calculate the 3D position of a given point using
as an input the correspondences of its 2D coordinates over the
camera sensors.
To test the 3D reconstruction accuracy, we used another

checkerboard pattern (checkerboard B) with the same number
of squares as the checkerboard A (21 15), but the size of the
squares was 15 mm 15 mm. The checkerboard B was moved
axially in steps of 60 mm inside the training volume for six
different axial positions. The process of the corner extraction
was carried out for each camera position and for each axial
position. The correspondences between points obtained for the
checkerboard B were used as an input for the calibrated InI
fuzzy system.
We wanted to quantify the error depending on the number

of camera positions employed in the pickup process. The grid
on which the camera was actually located was predefined, but
we selected different subsets of camera positions. In this way,
we considered different number of locations and also different
relative positions.
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Fig. 5. Camera arrangement used for calibrating the fuzzy system and for
capturing the information of a 3D scene.

TABLE I

The position of the cameras over the grid is denoted by a
number ranging from one to six as shown in Fig. 5. Among
the possible combinations that enable the experimental setup,
we selected eight different arrangements for training the system.
The performance of each arrangement was tested with the im-
ages of the checkerboard B captured from the same camera po-
sitions used for calibration process. The 3D position of the grid
of points defined by the checkerboard B was calculated by the
fuzzy system for each arrangement. These positions were com-
pared with the actual 3D position of the grid points measured
during the experiment.

IV. CALIBRATION RESULTS

Table I shows the error obtained using the fuzzy calibration
system depending on the number of cameras employed in the
calibration and their relative position over the grid. The mean
3D error, , is calculated according to (5) and the mean error
of each spatial coordinate, and , is calculated according
to (6).
As it can be seen in Table I, the accuracy of our method de-

pends on the number of camera positions employed and also
to their relative locations. From these results, we can draw a
number of conclusions. Considering only two camera positions,
as the horizontal distance between them is increased, the error in
the axial coordinate is reduced. If we add one or more camera lo-
cations in the vertical direction, the error in this direction is also
reduced. Optimum results are achieved by using four camera
positions separated by the maximum achievable distance in the
pre-established array. Adding intermediate camera positions in
the array does not decrease the 3D error. By contrast, the error
slightly increases.

Whereas increasing the number of cameras can be expected
to lead to a more complex model and therefore increase the
modeling accuracy, ANFIS is known to suffer from the “curse
of dimensionality” as the number of inputs gets larger, caused
primarily by the exponential increase in the number of fuzzy
rules and parameters to be tuned during the learning process.
From a practical point of view, if the number of inputs becomes
larger than (usually) 8, the training time increases very much
and, more importantly, the size of the training data needed for
an accurate estimation of the fuzzy sets parameters needs to in-
crease exponentially as well. Otherwise, the model parameters
cannot be estimated with a good accuracy, and the result is a
larger error than with an ANFIS model with less input variables.
Such a case is also mentioned in other practical studies, such as
that conducted by Castellano et al. in [21]; in which case, the
results are similar to our findings. To some extent, subtractive
clustering can alleviate the curse of dimensionality by reducing
the number of fuzzy rules in the FIS structure; however this is
only true for a limited number of input variables, generally not
exceeding 8, which explains why most works in the field restrict
to the use of ANFIS with at most 6 input variables which in our
case would correspond to a system of 3 cameras; however our
system proves the smallest error for a number of 4 cameras, cor-
responding to 8 input variables.
Although the results obtained are reflected in a quantitative

manner in the previous table, Fig. 6 may help the reader to visu-
alize the improvement achieved by using an InI system instead
of a stereo pair. Blue asterisks mark the measured 3D position
of the points over the grid and red crosses indicate the calcu-
lated position of those points by using the fuzzy system. As an
example we show the reconstruction obtained with camera posi-
tions 1 and 2 (maximum error), and the reconstruction obtained
with camera positions 1, 3, 4 and 6 (minimum error).
These results demonstrate the capability of the system to per-

form a real scale 3D reconstruction of a cloud of points with an
average error less than 1 mm. The natural consequence of this
ability is applying fuzzy systems to reconstruct a volume object.

V. 3D RECONSTRUCTIONS

Next, we checked the ability of the system to reproduce a real
3D object including its color and texture. To do so, first, the ob-
ject was placed inside the training volume of the system. Then,
the camera captured this object from different perspectives, with
the same period and the same number of images used during the
training process. From the previous analysis on system perfor-
mance, it seems logical to use the configuration and number of
camera positions that provide the best 3D reconstruction accu-
racy achieved. This configuration was compared with the one
that provides the worst 3D reconstruction accuracy. Therefore,
the first reconstruction was carried out from the fuzzy system
that was trained for the camera positions 1, 3, 4, and 6 and
the second reconstruction was conducted employing the fuzzy
system calibrated for camera positions 1 and 2. In Fig. 7 we
show the experimental setup used for capturing a 3D object lo-
cated inside the training volume of the fuzzy system.
As a 3D object we used a mortar of known dimensions (see

Fig. 8). The real size of the object can be compared with the size
of the reconstructed object.
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Fig. 6. Computational reconstruction of the cloud of points defined by the
checkerboard B for six different axial positions inside the training volume. Re-
constructed points are compared with the measured positions of those points.

Fig. 7. Experimental setup for capturing different EIs of a 3D object. The
mortar is located inside the training volume of the fuzzy system.

For the first configuration, the camera took four EIs con-
taining different perspectives of the mortar from the camera po-
sitions 1, 3, 4, and 6 (see Fig. 9). But these images could not be

Fig. 8. Measured dimensions of the mortar employed as a 3D object.

Fig. 9. Set of EIs captured with the SAII system. Perspectives correspond to
camera positions 1, 3, 4, and 6.

directly employed by the fuzzy system.We first needed to estab-
lish the correspondences between each of the captured images.
To do this, we used a stereo matching technique based on corre-
lation. The basic stereo matching algorithm consists of choosing
a specific block in a certain image and defining another block
of pixels, called window, in the corresponding image. During
the matching process, the window is moved along the corre-
sponding image to find the block which holds a minimum dif-
ference of intensity with the specified one [22]. This disparity
estimation was ameliorated by incorporating subpixel estima-
tion [23] and dynamic programing [24] in the algorithm.
From the disparity map it was possible to obtain the 2D co-

ordinates of every point of the surface of the 3D object over the
sensor for the captured four views.
The fuzzy system used the correspondences calculated for

the set of 2D photographs to obtain the 3D coordinates of the
surface of the object. In Fig. 10, we show some of the recon-
structions obtained with the fuzzy system rendered from dif-
ferent perspectives. As seen in this figure, in the reconstructions
there are some errors. Firstly there are areas of the surface of the
mortar with holes. These holes are due to how the clustering al-
gorithm works. To obtain the 3D coordinates of a point, it is nec-
essary that such point has been captured simultaneously by all
cameras used during the capture process. When some parts are
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Fig. 10. Computational reconstructions of the mortar rendered from different
perspectives. The fuzzy system has been calibrated using camera positions 1, 3,
4 and 6.

occluded for one or more cameras, the algorithm is not able to
estimate the correspondences for such points, and an empty area
appears in those parts during the reconstruction. Similarly, some
artifacts appear on the top of the mortar, which is an area with
occlusions in the vertical direction (see perspectives in Fig. 9).
This cause the fuzzy system performs an interpolation when es-
timating the depths of those points, producing erroneous depth
estimation.

Fig. 11. Stereo pair captured with the SAII system. Perspectives corresponding
to camera positions 1 and 2.

Despite the errors in the reconstructions, reconstructed ob-
ject dimensions correspond to the actual dimensions of the orig-
inal objet. In Fig. 10 multiple views of the reconstructed object
are shown. Cartesian coordinate systems in which the different
views are represented, are graduated in mm so that measure-
ments can be taken to compare the dimensions of the recon-
structed object with the dimensions of the real object. In the
front view reconstruction (plane XY), the height and the diam-
eter of the base and the top of the mortar can be easily measured.
Even though the measurement accuracy is not high because of
some edges are not sharp, the diameter of the base of the mortar
can be measured as to be 105 mm, while the diameter of the top
of the mortar is close to 140 mm. The height of the mortar is
about 95 mm. These measurements are good approximations to
the correct size and proportions of the original object.
For the second configuration, the camera captured two EIs

containing different perspectives of the mortar from the camera
positions 1 and 2 (see Fig. 11).
After establishing the correspondences for the stereo pair

with the same method than in the first configuration, the fuzzy
system used such correspondences to obtain the 3D coordinates
of the surface of the object. In Fig. 12, we show the recon-
struction of the mortar calculated from the images captured
from camera positions 1 and 2. The comparison of the recon-
structions obtained in Fig. 10 with those obtained in Fig. 12,
illustrates the improvement in the quality of the reconstruction
with a multiple camera, compared with that from a two camera
system.

VI. CONCLUSION

A fuzzy systemwas employed to calibrate a SAII system. The
fuzzy system was calibrated for eight different configurations
of the camera positions on a predefined array of locations. The
error in the reconstruction process was quantified for different
number of camera positions and also by changing their relative
locations in the array. As expected, we found out that for a stereo
pair, as the baseline was longer, the axial error was reduced.
Adding a third camera position in the direction perpendicular to
the baseline provides extra information to the system and hence
reduces the reconstruction error in that direction. The minimum
error was achieved with four camera positions located in the
corners of the array. Adding camera locations in intermediate
positions was expected to improve the resolution, but that was
slightly worsened. From a practical point of view, if the number
of inputs becomes larger than (usually) 8, the training time in-
creases very much and, the size of the training data needed for
an accurate estimation of the fuzzy sets parameters needs to in-
crease exponentially as well. Otherwise, the model parameters
cannot be estimated with a good accuracy, and the result is a
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Fig. 12. Computational reconstructions of the mortar rendered from different
perspectives. The fuzzy system has been calibrated using camera positions 1
and 2.

larger error than with an ANFIS model with less input variables.
A solution for investigating the behavior of the system for more
inputs would be either to use hybrid learning architectures (e.g.,
Genetic Algorithms—ANFIS), either to increase the training set
significantly. However the second solution may not be the best
option for a practical calibration system. The investigation of
the first proposed solution will make the object of our future re-
search.

The ability of the system to perform real scale 3D reconstruc-
tions including color and texture has been demonstrated by ap-
plying the fuzzy system to a real object. Reconstructions ren-
dered from different viewpoints show the spatial accuracy of
the proposed method. This calibration process can be used with
SAII but it can be also applied to camera arrays. In general, SAII
is a useful tool to partially occluded object reconstruction. The
algorithm used in this article is not able to remove occlusions
since the fuzzy system is trained so that the image of a point
should appear in all EIs to get their 3D coordinates. Further re-
search is needed to clarify if the algorithm can be trained to re-
construct scenes with partial occlusions.
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