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There has been great interest in researching and implementing effective technologies
for the capture, processing, and display of 3D images. This broad interest is evidenced
by widespread international research and activities on 3D technologies. There is a
large number of journal and conference papers on 3D systems, as well as research
and development efforts in government, industry, and academia on this topic for
broad applications including entertainment, manufacturing, security and defense,
and biomedical applications. Among these technologies, integral imaging is a promising
approach for its ability to work with polychromatic scenes and under incoherent or
ambient light for scenarios from macroscales to microscales. Integral imaging systems
and their variations, also known as plenoptics or light-field systems, are applicable in
many fields, and they have been reported in many applications, such as entertainment
(TV, video, movies), industrial inspection, security and defense, and biomedical imaging
and displays. This tutorial is addressed to the students and researchers in different dis-
ciplines who are interested to learn about integral imaging and light-field systems and
who may or may not have a strong background in optics. Our aim is to provide the
readers with a tutorial that teaches fundamental principles as well as more advanced
concepts to understand, analyze, and implement integral imaging and light-field-type
capture and display systems. The tutorial is organized to begin with reviewing the
fundamentals of imaging, and then it progresses to more advanced topics in 3D imaging
and displays. More specifically, this tutorial begins by covering the fundamentals of
geometrical optics and wave optics tools for understanding and analyzing optical
imaging systems. Then, we proceed to use these tools to describe integral imaging,
light-field, or plenoptics systems, the methods for implementing the 3D capture proce-
dures and monitors, their properties, resolution, field of view, performance, and metrics
to assess them. We have illustrated with simple laboratory setups and experiments the
principles of integral imaging capture and display systems. Also, we have discussed 3D
biomedical applications, such as integral microscopy. © 2018 Optical Society of
America

512 Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics Tutorial

https://orcid.org/0000-0002-1449-8976
https://orcid.org/0000-0002-1449-8976
https://orcid.org/0000-0002-1449-8976
mailto:Bahram.Javidi@UConn.edu
mailto:Bahram.Javidi@UConn.edu
mailto:Bahram.Javidi@UConn.edu
mailto:manuel.martinez@uv.es
mailto:manuel.martinez@uv.es
mailto:manuel.martinez@uv.es
https://crossmark.crossref.org/dialog/?doi=10.1364/AOP.10.000512&domain=pdf&date_stamp=2018-07-02


OCIS codes: (100.6890) Three-dimensional image processing; (110.6880)
Three-dimensional image acquisition; (120.2040) Displays; (180.6900) Three-
dimensional microscopy
https://doi.org/10.1364/AOP.10.000512

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
2. Fundaments of Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

2.1. Telecentric Optical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
2.2. Aperture and Field Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
2.3. Lateral Resolution and Depth of Field . . . . . . . . . . . . . . . . . . . . . 520

3. Wave Theory of Image Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
3.1. Propagation of Waves through Telecentric Optical Systems . . . . . . . 521
3.2. Spatial Resolution and Depth of Field. . . . . . . . . . . . . . . . . . . . . . 523

4. Three-Dimensional Integral Imaging Analyzed in Terms of
Geometrical Optics and Wave Optics. . . . . . . . . . . . . . . . . . . . . . . . . . 525
4.1. Integral Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
4.2. Depth Refocusing of 3D Objects . . . . . . . . . . . . . . . . . . . . . . . . . 529
4.3. Resolution and Depth of Field in Captured Views. . . . . . . . . . . . . . 533
4.4. Resolution and Depth of Field in Refocused Images . . . . . . . . . . . . 533
4.5. Plenoptic Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
4.6. Resolution and Depth of Field in Calculated EIs . . . . . . . . . . . . . . 538

5. Display of Plenoptic Images: the Integral Monitor . . . . . . . . . . . . . . . . . 539
6. Integral Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
Appendix A: Fundamental Equations of Geometrical Optics and ABCD
Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

A.1. ABCD Matrices for Ray Propagation and Refraction . . . . . . . . . . . 549
A.2. ABCD Matrices Thick and Thin Lenses . . . . . . . . . . . . . . . . . . . . 550
A.3. Principal Planes and the Nodal Points . . . . . . . . . . . . . . . . . . . . . 553

Appendix B: Fundamental Equations of Wave Optics Theory
of Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

B.1. Interferences between Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
B.2. Interferences between Multiple Waves: the Concept of Field Propagation . . 557
B.3. Propagation of Light Waves through Converging Lenses . . . . . . . . . 557

Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
References and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Tutorial Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics 513

https://doi.org/10.1364/AOP.10.000512


Fundamentals of 3D imaging
and displays: a tutorial on
integral imaging, light-field,
and plenoptic systems
MANUEL MARTÍNEZ-CORRAL AND BAHRAM JAVIDI

1. INTRODUCTION

In the past two decades, there has been substantial progress in extending the classical
two-dimensional (2D) imaging and displays into their 3D counterparts. This transition
must take into account the fact that 3D display technologies should be able to stimu-
late the physical and psychophysical mechanisms involved in the perception of the 3D
nature of the world. In terms of psychophysical cues, we can enumerate the perception
of occlusions such that occluding objects are closer and occluded objects are farther
away, the conical perspective rule, shadows, the movement parallax, that is close
objects appear to move faster that distant objects, etc. Conversely, the physical mech-
anisms are accommodation, convergence of the visual axes, and the disparity between
the retinal images of the same object. When observing distant objects, the accommo-
dation is relaxed, the visual axes are parallel, and there is no disparity. In contrast, for
the observation of close objects the eyes apply a stronger accommodation effort, a
remarkable convergence of the visual axes is stimulated, and great disparity is
achieved. The brain uses these physical clues to perceive and acquire or estimate
information about the depth in 3D scenes.

The first approach to the challenge of capturing and displaying 3D images was based
on the concept of stereoscopy. Stereoscopic systems are based on the imitation of the
binocular human visual system (HVS). Following this idea, a pair of pictures (or mov-
ies) of the same 3D scene are taken with a pair of cameras that are set up with some
horizontal separation between them. Later the images are shown independently to the
eyes of the observer so that the left (or the right) eye only can see the picture captured
with the left (or the right) camera. In this way, some binocular disparity is induced,
which stimulates the convergence of the visual axes. This process provides the brain
with the information that allows it to perceive and estimate the depth content of the
scene. In 1838, Wheatstone reported the first stereoscope [1]. Some years later, in
1853, Rollman proposed to make use of color vision and codify the stereoscopic pairs
in complementary colors. Then he proposed the use of anaglyphs [2]. This method
was widely used throughout the 20th century, but became less popular due to poor
color reproduction and cross talk between the left and right images. However, this
technique is experiencing a certain rebirth, due to its easy application for the repro-
duction of 3D videos through the Internet. In order to overcome the color-reproduction
problems, the use of polarization to codify the stereoscopic information has been pro-
posed [3,4]. However, the main problem of stereoscopy is that 3D images are not
optically displayed or optically generated. Instead, a pair of 2D images is displayed
for projection onto the human observer’s retinas. It is the brain that promotes the im-
age fusion for producing the sensation of perspective and depth, that is, 3D perception.
In this process, a decoupling occurs between two otherwise coupled physiological
processes known as convergence and accommodation [5,6]. This is an unnatural
physiological process that may give rise to visual discomfort or fatigue such as head-
ache after prolonged observations of stereo displays. Stereoscopy can be implemented
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also without the need for using special glasses. In this case, the display systems are
called auto-stereoscopic, which may be implemented by means of lenticular sheets [7]
or by means of parallax barriers [8].

Multi-view systems are an upgraded realization of stereoscopy [9]. Still based on the
use of parallax barriers or in lenticular sheets, these systems provide the user with up
to 16 views. Although multi-view systems can provide different stereoscopic views to
different observers, they have the drawback of flipping, or double image, when the
observer is displaced parallel to the system. Note, however, that whatever its complex-
ity any display system based on the concept of stereoscopy still suffers from the con-
sequences of the convergence-accommodation conflict.

In order to avoid such conflict, the so-called real 3D displays have been proposed. In
these systems the 3D images are observed without the aid of any special glasses or
auto-stereoscopic device. Examples include the volumetric displays [10,11], which
can display volumetric 3D images in true 3D space, and the holographic displays
[12]. Conceptually, holography is considered by many as a technique that provides
a better 3D experience and does not produce visual fatigue. However, practical
implementation of holographic display still faces many technical difficulties, such
as the need for refreshable or real-time updatable display materials, and the need
for a huge number of very small pixels. Thus, holography may face challenges in
the near future for widespread 3D display media.

Lippmann proposed another real 3D display technology in 1908, under the name of in-
tegral photography (IP). Specifically, Lippmann [13] proposed the use of a microlens array
(MLA) in front of photographic film. With such a device it was possible to capture a
collection of 2D elemental images, each with a different perspective of the 3D scene.
The original idea of Lippmann was to use these images for the display of 3D scenes.
However, that system showed some essential problems. One was the overlapping of
elemental images in the case of wide scenes. Another problem was that the IP system
using microlens arrays could be used only for capturing scenes that are close to the camera.

To overcome these problems, Coffey [14] proposed the use of a field lens of large
diameter to form the image of the scene onto a MLA. This design permitted the im-
plementation of the Lippmann concept with a conventional photographic camera,
avoiding the overlapping between images. The images provided by the Coffey’s cam-
era are much smaller than the elemental images and are usually named as microi-
mages. The design made by Coffey was refined many years later by Davies et al. [15].

Due to the lack of flexibility associated with the use of photographic film, the IP tech-
nology was hibernating for decades. However, thanks to the advances in the quality
and speed of optoelectronic pixelated sensors and displays, and also in the speed and
capacity of digital technology and software tools, the interest in integral photography
was reborn by the end of the 20th century, when it was renamed as integral imaging
(InIm) by some authors [16,17]. In this sense some proposals of capturing and trans-
mitting integral images in real time were remarkable [18,19]. The use of a multi-
camera system organized in an array form was also noteworthy [20]. It is important,
as well, that in 1991 Adelson and Bergen reported the plenoptic formalism for de-
scribing the radiance of any luminous ray in the space as a function of the angle and
position [21]. On the basis of this formalism the first plenoptic camera, an update of
the camera designed by Coffey, was built [22]. Currently, and to the best of our knowl-
edge, two plenoptic cameras are commercially available [23–25].

In the past decade, the InIm technology has experienced a rapid development and
more importantly, has been applied as an efficient solution to many technological
problems. Among them, some biomedical applications are remarkable, such as the
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use of plenoptic technology in otoscopy [26], ophthalmology [27], endoscopy
[28,29], and for static [30,31] or dynamic [32–34] deep-tissue inspection. InIm
technology has been proposed also for wavefront sensing [35], 3D imaging using
long-wave infrared light [36,37], head-mounted display technology [38], or large
3D screens [39,40]. The utility of the plenoptic concept is spreading very fast and
reaching even some exotic applications, such as giga pixel photography [41], 3D
polariscopy [42], the inspection of road surfaces [43], or the monitoring of the red
coral [44]. An application of integral photography that deserves special attention
is 3D microscopy. This application, called integral microscopy (IMic) or light-field
microscopy, offers to microscopists the possibility of observing the samples, almost in
real time, reconstructed in 3D from many different perspectives [45–51]. In this
application to microscopy, the development of disposable [52,53] and reconfigurable
[54] micro-optics for instruments is remarkable.

The widespread research indicates that integral imaging, or the plenoptic concept, is a
technology of substantial interest with many diverse applications including entertain-
ment, medicine, security, defense, and transportation. Thus, a tutorial that describes the
fundamental principles and characteristics of integral imaging in a rigorous and com-
prehensive way is of interest to the community of optical scientists and engineers, phy-
sicists, and computer scientists interested in 3D imaging. The tutorial is organized as
follows. In Section 2, the basic principles of geometrical optics are explained in term
matrix formalism. In Section 3, a brief review of scalar wave optics theory of 2D image
formation is presented. Special attention is given to the explanation of spatial resolution
and depth of field (DoF) metrics. The concepts presented in the first two sections permit
the reader to have a better understanding of the materials in Section 4, which presents
the fundamentals of 3D InIm systems, and how they can capture multiple views of 3D
scenes, that is, the capture stage of the 3D imaging system. The computational refocus-
ing is explained in this section, and the spatial resolutions and depth of field of the
reconstructed 3D scene are discussed. Section 5 is devoted to the explanation of the
characteristics of integral-imaging display monitors. In Section 6, we overview the spe-
cific application of the Lippmann concept to 3D microscopy.

We have included Table 1 with a list of all the acronyms used in the paper.

Table 1. List of Acronyms Used in the Paper

Acronym Full Name

3D Three-dimensional
AS Aperture stop
BFL Back focal length
BFP Back focal plane
CCD Charge-coupled device
DoF Depth of field
Dof Depth of focus
EFL Effective focal length
EI Elemental image
EP Entrance pupil
FFP Front focal plane
HVS Human visual system
IMic Integral microscope
InIm Integral imaging
IP Integral photography
MLA Microlens array
MO Microscope objective
NA Numerical aperture
PSF Point spread function
ROP Reference object plane
XP Exit pupil
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2. FUNDAMENTS OF GEOMETRICAL OPTICS

If we do not take into account the wave nature of light, and consider that light prop-
agates in homogeneous media with constant refractive index, then light propagation
can be described using geometrical optics. In this case, light beams act as bundles of
rays that have ideally infinitesimal width and propagate following a straight trajectory.
The branch of optics dealing with light rays, especially in the study of free-space
propagation and lenses, is known as geometrical optics. In this section, we present
a brief overview of geometrical optics related to the imaging capacity of optical sys-
tems. In Appendix A, we describe in more detail the fundamental equations of geo-
metrical optics and the ABCD matrices that connect different spatial-angular states of
the light beams, that is, 2D vectors whose components are the spatial and the angular
coordinates of the ray. We recommend that those who are not familiar with geomet-
rical optics read Appendix A before proceeding to Subsection 2.1.

2.1. Telecentric Optical Systems
We start by describing a type of imaging architecture that is very common in many
optical imaging applications. We refer to telecentric (or afocal) systems [55], which
can be implemented by the coupling of focal elements, so that the effective focal
length (EFL) is infinite [56] (see Subsection A.3, in Appendix A, for an exact def-
inition of the EFL). Although many lenses can compose telecentric systems, we will
perform our study here with a telecentric system composed of only two lenses (see
Fig. 1). Naturally, this election does not imply any loss of generality. According to
Appendix A, one can calculate the ABCD matrix [57] between the front focal plane
(FFP) of the first lens, F1, and the back focal plane (BFP) of the second one, F 0

2:

MF1F
0
2
�MF2F

0
2
MF1F

0
1
�
�

0 −f 2
P2 0

��
0 −f 1
P1 0

�
�
�−P1f 2 0

0 −P2 f 1

�
�
�
A B

C D

�
,

(1)

where f i is the focal length for the lens i � 1, 2, and Pi � f −1i is its optical power. We
find that F1 and F 0

2 are conjugates (the matrix element B � 0) with lateral magnifi-
cation M � −f 2∕f 1 and angular magnification γ � −f 1∕f 2. It is also confirmed that
the EFL is infinite (the matrix element C � 0).

It is interesting to find the conjugation relation for the case of an object, O, placed at a
distance z0 from F1. To this end, we calculate the matrix:

MOO0 � TF0
2
O0MF1F

0
2
TOF1

�
�−P1f 2 z00P2 f 1 − z0P1f 2

0 −P2 f 1

�
: (2)

From this matrix, and after setting the element B � 0, we obtain the conjugation
relation for telecentric systems:

Figure 1

Scheme of a telecentric system composed of two converging lenses.
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z00 � M 2z0 and M � − f 2
f 1

: (3)

Equation (3) confirms that afocal systems are interesting in the sense that, although
they have no optical power (C � P � 0), they have the capacity of providing images
with a constant lateral magnification, M , which does not depend on the object posi-
tion. An interesting consequence is that the axial magnification, α, is independent of
the object position:

α � Δz00
Δz0

� M2: (4)

Telecentric systems are typically associated to two optical instruments with very
different applications. One is the Keplerian telescope and the other is the optical
microscope (see Fig. 2).

The telescope results from the afocal coupling between a large-focal-length objective
lens and a short-focal-length ocular lens. Designed for the observation of very far
objects (which produce bundles of incident collimated beams), the telescope provides
images with high angular magnification (jσ0j ≫ jσj). Low-magnification Keplerian
telescopes are widely used in optical laboratories for expanding collimated beams.

In contrast, the optical microscope is composed of a short-focal-length microscope
objective (MO) and a large-focal-length tube lens. It is designed for forming images
with high lateral magnification (M � −f TL∕f ob). Due to the property of having con-
stant lateral and axial magnification, the telecentric microscopes are especially well
adapted for providing images of 3D specimens, in which some sections are not in the
object plane, but axially displaced.

Let us show an example of the utility of the ABCD formalism for the analysis of new
optical instruments. We refer to the recent proposal of inserting an electrically ad-
dressed liquid lens in an optical microscope aiming to perform fast axial scanning
of 3D specimens [58]. The scheme of this new microscope is shown in Fig. 3.

Figure 2

Most popular optical instruments based on telecentricity. (a) Keplerian telescope, and
(b) optical microscope.
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In order to find the plane, O, in the object space that is conjugated with the CCD, we
calculate the matrix:

MOF0
TL
� MFTLF

0
TL
MLLMFobF

0
ob
T0Fob

�
�−f TLPob f ob − z0 f LLPob

0 −PTL f ob

�
: (5)

From the above equation we find that O and F 0
TL are conjugated provided that B � 0,

that is,

z0 � f 2obPLL, (6)

where PLL stands for the optical power of the liquid lens. This means that one can
gradually scan the axial position of the object plane by tuning the voltage of the liquid
lens, and therefore its optical power. By setting positive or negative optical powers, it
is possible to scan the object in front and behind the focal plane. But the key point is
that the axial scan is performed without any modification of the other important
parameters of the microscope, such as the lateral magnification (M � −f TL∕f ob)
or the numerical aperture.

2.2. Aperture and Field Limitation
In the previous study, we have not taken into account the finite size of the optical
elements, such as the lenses, apertures, and sensors. Thus, we have analyzed neither
the limitations of light collected by the optical system nor the limits in the size of the
object that is imaged. To study these important effects, we must take into account the
finite size of the optical elements, and also make some additional definitions.

We start by defining the aperture stop (AS) as the element that determines the angular
extension of the beam that focuses at the axial point of the image. In Fig. 4(a) we show
an example of aperture limitation. In terms of energy, the AS is the element that limits
the amount of light collected by the optical system from the central point of the object.
Note that in this example, the aperture stop is placed at the BFP of the first lens, which
is also the FFP of the second lens. As result, its conjugates at the object space (the
entrance pupil) and at the image space (the exit pupil) are at the infinity. Thus, we can
say that the system shown in Fig. 4 is strictly telecentric [56].

There are some well-known optical parameters in photography or in microscopy that
are defined in terms of the aperture limitation. These include the f -number, f #, or the
numerical aperture, NA, whose definitions here are

f # �
f 1
ϕAS

and NA � sin σ: (7)

These parameters can be evaluated also in the image space, as

Figure 3

Scheme of the fast axial-scanning optical microscope.
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f 0# �
f 2
ϕAS

� jM j f # and NA0 � sin σ0 � NA

jM j : (8)

In the paraxial case these parameters are related through

f # �
1

2NA
and f 0# �

1

2NA0 : (9)

Once the aperture stop is determined, it is easy to see that not all the points in the
object plane are able to produce images with the same illumination. Instead, the illu-
mination gradually decreases as the object point moves away from the optical axis.
A second aperture, called the field stop (FS), is responsible for this limitation.
The joint action of the AS and the FS divides the object plane in some different fields.
First, we have the field of uniform illumination; a circular region, centered at the
optical axis, in which all the points produce images with the same illuminations as
the axial point [see Fig. 4(b)]. Next, we have an annular field in which the illumination
gradually decreases, producing the so-called vignetting effect. A typical ring within
this field is the one at which the illumination of the image is reduced by a factor of 1/2
[see Fig. 4(c)]. The outer ring of the vignetting field is called the limit-illumination
ring [see Fig. 4(d)]. Any object point beyond this ring does not produce any image.
An example of field limitation is shown in Fig. 5.

2.3. Lateral Resolution and Depth of Field
To complete the geometrical study of optical imaging instruments, we analyze two
features of great interest and that are closely connected: the lateral resolution and
the DoF. In order to simplify our study, we consider the case of a telecentric imaging
system. This selection simplifies the equations, but does not limit the generality of our
conclusions.

As stated previously, in this geometric optics study we are not considering any diffrac-
tion (or wave optics) effects. In addition, we assume that the optical systems are free of
aberrations (this is a reasonable assumption, since good-quality commercial optical
instruments are free of aberrations within the field of uniform illumination). Under
these hypotheses, any single point of an object is imaged onto a single image point,
and therefore the resolution is determined by the pixelated structure of the
sensor (typically CCD or CMOS). Following Nyquist statements [59], we assume that

Figure 4

(a) Aperture stop in a telecentric system, (b) the limit of the field of uniform illumi-
nation, (c) the vignetting region, and (d) the field of limit illumination.
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two object points are resolved (or distinguished) in the image when they are imaged or
captured by different sensor pixels, having a single pixel between them. Therefore, the
resolution limit, defined as the smallest separation between two points on an object that
can still be distinguished by the camera system as separate entities, is given by

ρgeo � 2
Δp

jM j , (10)

where Δp is the pixel size. It is apparent that to obtain high-resolution images, sensors
with very small pixels are required. Therefore, it is the current challenge for sensor man-
ufacturers to build sensors with a huge amount of small (even submicrometer) pixels.

The DoF of an imaging system is defined as the distance from the nearest object plane
in focus to that of the farthest plane which is also simultaneously in focus. The DoF is
usually calculated as the conjugate of the depth of focus, which is illustrated in Fig. 6.
According to this scheme,

dof � 2
f 2
ϕAS

Δp � 2f 0#Δp: (11)

Consequently,

DoFgeo �
dof

M 2
� 2f #

Δp

jM j �
Δp

jM jNA : (12)

In Fig. 7 we show two pictures of the same scene. One was obtained with a low
f -number (small DoF) and the other with a high f -number (large DoF).

3. WAVE THEORY OF IMAGE FORMATION

In this section, we study the image formation, but taking into account the wave nature
of light. We will obtain simple formulae that describe the optical image and will find
that they are consistent with the results obtained on the basis of geometrical optics. We
recommend that those who are not familiar with the basic concept of wave optics
propagation read Appendix B before proceeding to Subsection 3.1.

3.1. Propagation of Waves through Telecentric Optical Systems
Now we present the analysis of image formation in terms of wave optics. We perform
our analysis for the particular case of a telecentric system. This selection will allow us

Figure 5

Example of field limitation. The image is composed of a central circular region of
uniform illumination plus an annular field in which the illumination decreases (vignet-
ting region).
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to derive a mathematical expression for description of the amplitude distribution in the
image plane. This selection does not limit the generality to our study, and its conclu-
sions are applicable to any other optical imaging system. The telecentric imaging
scheme is shown in Fig. 8.

The light propagating through this system goes through two cascaded Fourier trans-
formations. Then we consider a diffracting object, of amplitude transmittance t�x, y�,
that is placed at the FFP of the first lens and is illuminated by a monochromatic plane
wave. After the first Fourier transformation, we obtain the light distribution in the BFP
after the circular aperture:

u�1 �x, y� �
1

λ0 f 1
t̃

�
x

λ0 f 1
,

y

λ0 f 1

�
p�x, y�, (13)

where p�x, y� is the amplitude transmittance of the aperture and λ0 is the light wave-
length in vacuum. Next, we calculate the amplitude at the BFP of the second lens by
performing the second Fourier transform:
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Figure 6

Depth of focus (dof) is the axial range by which the sensor can be displaced and still
record a sharp image of an object point. Sharp means that only one pixel is impressed.
In good approximation, the depth of field (DoF) is the conjugate of the dof.

Figure 7

Two pictures of the same scene: (a) small DoF and (b) large DoF.
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where, as defined in the previous section, M � −f 2∕f 1 is the lateral magnification of
the telecentric system. This equation provides the key result of imaging systems when
analyzed in terms of wave optics. That is, the image of a diffracting object is the result
of the convolution of two functions. The first function t�·� is a properly scaled replica
of the amplitude distribution of the object. This function is the ideal magnified image
formed or predicted according to the geometrical optics. The second function p̃�·� is
the Fourier transform of the aperture stop, and is usually known as the point spread
function (PSF) of the imaging system. In other words, the image provided by a dif-
fraction-limited optical system is the result of the convolution between the ideal
geometrical optics predicted magnified image with the PSF of the imaging system.
The aperture stop of an imaging system is usually circular, and therefore the PSF takes
the form of an Airy disk [59]:

PSF�r� �
�
ϕ

2

�
2

Disk

�
r

2λ0 f 2∕ϕ

�
, (15)

where ϕ is the aperture-stop diameter, and Disk�x� � J 1�x�∕x, with J 1 being the
Bessel function of the first kind and order 1. The Airy disk is composed of a central
lobe, which contains more that 85% of the signal energy, and infinite outer rings of
decreasing energy.

3.2. Spatial Resolution and Depth of Field
The structure of the Airy disk has an essential influence on the capacity of the optical
system to provide sharp images of the fine details of the objects. This is illustrated in
Fig. 9, where we show the image of two point sources that are very close to each other.

According to Rayleigh criterion, two Airy disks are resolved if the distance between
their centers is larger than the radius of the first zero ring of the disk [60]. This radius
is, for the case of a circular aperture stop [see Eq. (15)],

ρ0dif �
1.22 · λ0 · f 2

ϕ
: (16)

Note that it is more convenient to express this distance not in the image plane, but in
the object plane. To accomplish this, we need to take into account the lateral mag-
nification of the imaging system. Thus, we obtain the resolution limit of the imaging
system, i.e., the shortest distance between two object points that can be distinguished:

ρdif �
ρ0dif
jM j �

1.22 · λ0 · f 1
ϕ

� 1.22 · λ0 · f # �
0.61 · λ0
NA

, (17)

Figure 8

In the simplest configuration, a telecentric optical system is composed of two convex
lenses, coupled in afocal manner, plus an aperture stop that is usually a circular aper-
ture.
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where M is the magnification of the imaging system. An example of the influence of
diffraction on the resolution of images is shown in Fig. 10, where we depict three
pictures of the same oil painting of Abraham Lincoln obtained with lenses with three
different f -numbers. In the figure, we can see that the use of a large f -number (or,
equivalently, small NA) produces a strong decrease in the lateral resolution, which
results in the blurring of the fine details of the image.

When imaging systems are analyzed in terms of wave optics, we can evaluate the DoF
of the system. We need to calculate the amplitude distribution in the image plane when
the diffracting screen is axially displaced by a distance z0, as defined in Fig. 1. In this
case, the amplitude distribution in the focal plane is

u0�x, y� � t�x, y� ⊗ e−ik0z0
λ0z0

exp

�
−i k0

2z0
�x2 � y2�

�
: (18)

The convolution with the quadratic phase function is due to the displacement of the
object by z0. Applying the results from Eq. (14), it is straightforward to obtain

Figure 9

Two Airy disks, corresponding to the images of two point sources that are placed close
to each other. According to Rayleigh criterion of resolution, we illustrate three cases:
(a) the images are not resolved, (b) the images are barely resolved, and (c) the images
are well resolved.

Figure 10

Three pictures of the oil painting “Gala looking at the Mediterranean Sea,” painted by
Salvador Dali. A different effect is obtained when the picture is imaged with: (a) a lens
with a low value of the f -number, (b) a lens with a medium value of the f -number; and
(c) a lens with a high value of the f -number.
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where we have omitted some irrelevant constant factors. From this equation, we see that
the amplitude distribution of a defocused image is obtained as the convolution between
the geometrical optics predicted image (the magnified image) with a new PSF, named
here as the defocused PSF. This new PSF appears between the square brackets in
Eq. (19) and is the result of propagating (or defocusing) the original PSF. Now,
it is possible to define a DoF range, which we denote as the DoFdif , as the length
of the axial interval around the object plane, such that the value at the center of the
defocused PSF is larger than one half such value of the original PSF. Although, we
do not show the details of the calculations, it is can be shown that the DoFdif is [60]

DoFdif �
λ0
NA2

� 4f 2#λ0: (20)

To complete this section, it is necessary to state that in real imaging systems, the wave
optics and the geometrical optics effects are present simultaneously. Therefore, when
analyzing the lateral resolution or the depth of field, both effects must be taken into
account. This classical result is summarized in the next two formulas of lateral spatial
resolution and DoF:

ρ � maxfρgeo, ρdifg � max

�
2
Δp

jM j , 1.22 · λ0 · f #
�
, (21)

and

DoF � DoFgeo � DoFdif � 2f #

�
Δp

jM j � 2f # λ0

�
� 2

f 0#
M2

�Δp � 2f 0# λ0�: (22)

Concerning the lateral resolution, the ideal case is when ρdif � ρgeo, that is, the reso-
lution is predicted by geometrical optics. To obtain this condition, it is necessary to have
the pixel size Δp � 0.61λ0 f 0#. In this case, the best resolution provided by wave optics
is achieved, and the effect of the sensor’s finite pixel size is avoided.

4. THREE-DIMENSIONAL INTEGRAL IMAGING ANALYZED IN TERMS OF
GEOMETRICAL OPTICS AND WAVE OPTICS

In the previous sections, we have used geometrical optics and wave optics to inves-
tigate the capacity of monocular optical systems for capturing images of 2D scenes.
In addition, since we presented the case of objects that are out of focus, the previous
study could be applied to the imaging of 3D objects, provided that they are considered
as a linear superposition of 2D slices. However, monocular images capture the infor-
mation of a single perspective of the 3D scene; therefore, they do not capture the
important 3D information of the scene, particularly in the presence of occlusions.
The solution to this problem is the capture of many monocular perspectives of
the same 3D scene. Thus, this section is devoted to discussing the principles of
multi-perspective imaging and the way multi-perspective images can be used for
reconstruction and display of 3D scenes.

4.1. Integral Photography
We start this section by analyzing heuristically a conventional photographic camera
when it is used for obtaining pictures of 3D scenes. As shown in the example of
Fig. 11, any point of a 3D object emits a cone of rays. Although the cone is composed
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of a continuous distribution of rays, in the figure we show only a finite number of rays.
Each ray carries different angular information of the 3D scene. In principle, any optical
instrument that collects such angular information is able to capture the perspective in-
formation of the 3D scene. This is the case for the binocular HVS, in which any eye (the
left and the right) perceives a different perspective of the 3D scene. Thus, the main
difference is that in the HVS two human retinas record the two different perspectives.

In monocular cameras, the position of the sensor defines the object plane. However,
when we have a 3D scene, there is no single object plane. To avoid this uncertainty, it
is convenient to define a reference object plane (ROP) in the central region of the 3D
scene, which is the conjugate of the sensor. Then, each sensor pixel collects and in-
tegrates all the rays with the same spatial information, but different angular contents.
The problem is that after the integration process, all the angular information is lost.

To understand this process better, it is convenient to perform the analysis in terms of
the plenoptic function, which represents the radiance [61] of the rays that impinge any
point in the image plane [21]. Assuming the monochromatic case, the plenoptic func-
tion is a 4D function L�x0, σ 0�, where x0 � �x0, y0� and σ 0 � �θ0,φ0� are, respectively,
the spatial and the angular coordinates of the rays arriving at the image plane. For the
sake of simplicity, in the forthcoming graphic representations, we will draw an epi-
polar section of the plenoptic function [62–64], that is, L�x0, θ0�. In other words, we
will draw only the rays propagating on a meridian plane. Naturally, this simplification
does not compromise any generality to the study.

We make a second simplification considering only the rays impinging the center of the
camera pixels. In this case, it is apparent that any pixel in the conventional photo-
graphic camera captures a plenoptic field that is confined to a segment of constant
spatial coordinate, but variable angular coordinate [see Fig. 12(a)]. From such ple-
noptic function, it is possible to calculate the irradiance distribution on the image
taken by the camera by simply performing an angular integration. In mathematical
terms, this can be made by calculation of the Abel transform [65] of the plenoptic
function, as illustrated in Fig. 12(b); that is,

I�x0� �
ZZ

σ 0
L�x0, σ 0�dσ 0: (23)

As can be seen from this figure, due to the angular integration, conventional photog-
raphy (and by extension any conventional imaging system) loses the multi-perspective
information and therefore, most of the 3D information of 3D scenes.

Figure 11

Scheme of a conventional photographic camera. Every pixel collects a cone of rays
with the same spatial coordinate but with variable angular content.
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The first approach to design a system with the capacity of capturing the plenoptic field
radiated by 3D objects was due to Lippmann, who proposed a multi-view camera
system [13]. Specifically, he proposed to insert a lens array in front of a light sensor
(photographic film in his experiment). This concept is illustrated in Fig. 13(a) where,
for simplification, we assume a pinhole-like array of lenses, and therefore only con-
sider rays passing through their center. Any lens in the array captures a 2D picture of
the 3D scene, but from a different perspective. We shall refer to these individual per-
spective images as elemental images (EIs). In order to avoid overlapping between
different EIs, a set of physical barriers is required. If we analyze this system in terms
of the plenoptic function, we find that any elemental image contains the angular in-
formation corresponding to rays passing through the vertex of the corresponding lens.
Note that we use the term integral image to refer to the collection of EIs of a 3D scene.
The information collected by the set of lenses can be grouped in a plenoptic map, as
shown in Fig. 13(b). From this diagram, it is apparent that the system proposed by
Lippmann has the ability of capturing a sampled version of the plenoptic field at the
plane of lenses. The sampling frequency is determined by the gap, g, between the
lenses and the sensor, the pitch p of the lens array, and the pixel size Δp of the image
sensor (according to what is explained in Appendix A, the gap is measured from the
principal plane H 0). While the sampling period along the spatial direction is given
directly by p, the period along the angular direction is given by pθ � Δp∕g.

In the plenoptic map, we can find the elemental images as the columns of the sampled
field. It is also interesting to note that horizontal lines correspond to a set of rays

Figure 12

(a) Plenoptic field incident onto the image sensor and (b) the captured image.

Figure 13

(a) Integral photography system as proposed by Lippmann and (b) corresponding
sampled plenoptic map.

Tutorial Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics 527



passing through the lenses equidistant and parallel to each other. The pixels of any
horizontal line in Fig. 13(b) can be grouped to form a subimage of the 3D scene. The
subimages constitute the orthographic views of the 3D scene. Orthographic means that
the scale of the view does not depend on the distance from the object to the lens array.
In this paper, the subimages will be named, alternatively, as microimages. In addition,
we will use hereafter the name plenoptic image to refer to the collection of micro-
images of a 3D scene.

Following the original proposal by Lippmann, other alternative but equivalent meth-
ods have been proposed for capturing the elemental images. The simplest one consists
in substituting the MLA by a pinhole array. This proposal has to deal with some im-
portant constraints. If we analyze the system in terms of geometrical optics, any point
from the object is imaged as a circle (or geometric shadow of a pinhole), whose diam-
eter is proportional to the pinhole diameter. Thus, if one does not wish to decrease the
resolution of the elemental images the pinholes should have a diameter smaller than
the pixel size. However, small pinholes imply very low light efficiency. An additional
problem is that small pinholes could give rise to significant diffraction effect that could
distort the recorded plenoptic map. As far as we know, the pinhole array has not been
proposed yet as an efficient way for capturing the plenoptic information. However, we
still consider that it could be very interesting to explore the limits of such a technique
by searching for the optimum configuration in terms of the expected resolution, and
acceptable light efficiency. It is worthy to remark that a recent approach based on time
multiplexing has been proposed for overcoming some of the problems associated with
integral imaging with pinholes [66].

Another interesting approach is based on the idea of using an array of digital cameras
[67]. The advantage of this approach is that the elemental images can have very high
resolution, and that the array can capture large 3D scenes with high parallax. The main
problems are that it is a bulky system with the need for synchronizing a large number
of digital cameras. In addition, there is limited flexibility in fixing the pitch, since the
minimum pitch value is determined by the size of the digital cameras. Another pos-
sibility is using a single digital camera on a moving platform [68]. This method has
been named as the synthetic-aperture integral imaging, and allows the capture of an
array of multiple EIs in which the pitch and the parallax are fixed at will. Also, it
permits more exotic geometries in which the positions of the camera do not follow
a regular or rectangular grid [69]. The main disadvantages of this technique are the
bulkiness of the system and the large acquisition times, which make it useful only for
the capture of static scenes or if the speed of the moving platform is much higher than
the scene dynamics.

As an example to illustrate integral imaging and the type of images that are captured
by this technique, we prepared a scene composed of five miniature clay jugs and
implemented a synthetic-aperture integral imaging capture arrangement, in which
a digital camera (Canon 450D) was focused on the central jug, which was placed
at a distance of 560 mm from the image sensor. The camera parameters were fixed
to f � 18 mm and f 0# � 22. The large f -number was chosen in order to have a large
DoF and obtain sharp pictures of the entire 3D scene. With the setup, we captured
a set of NH � NV � 11 elemental images with pitch PH � PV � 6.0 mm. Since the
pitch is smaller than the size of the image sensor (22.2 mm × 14.8 mm;
4278 × 2852 pixels; Δp � 5.2 μm), we cropped every elemental image to 2700 ×
2700 pixels to remove the outer parts of the images and reduce their size. In addition,
we resized the elemental images so that any image was composed of nH � nV � 300

pixels with an effective pixel size of 46.8 μm. In Fig. 14(a), we show the central 7 × 7

elemental images containing up to 49 different perspectives of the scene, that is,
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the columns of the plenoptic map. In Fig. 14(b), we show the central EI. From the EIs,
and by a simple pixel mapping procedure, we calculated the plenoptic image, which is
composed of 300 × 300 microimages, as shown in Fig. 14(c).

4.2. Depth Refocusing of 3D Objects
Although integral photography was proposed originally by Lippmann as a technique
for displaying 3D scenes, there are other interesting applications. One application is to
compose a multi-perspective movie with the elemental images (see Visualization 1).
Or, equivalently, to display on a flat 2D monitor different elemental images following
the mouse movements (see Visualization 2).

Another application makes use of the ABCD algebra for calculating the plenoptic map
at different depths, including the ROP and other planes within the 3D object. This is
made by use of the free-space propagation matrix:

�
xz
θz

�
�
�
1 zR
0 1

��
x
θ

�
, (24)

where �xz, θz� are the spatial-angular coordinates at a given depth in the object space,
�x, θ� are the coordinates at the lens array, and zR is the refocusing distance measured
from the object plane to the lenses. From this equation it is apparent that the plenoptic
map at the object area is the same as the one captured by the lens array, but properly
sheared: L�xz, θz� � L�x� zRθ, θ�. Naturally, to obtain the irradiance distribution at
the propagated distance zR, it is only necessary to perform the Abel transform:

I�x; zR� �
Z
θ
L�x� zRθ, θ�dθ, (25)

as illustrated in Fig. 15.

Next, in Fig. 16 we show an example of the application of the refocusing algorithm.
In this example the algorithm is applied to the elemental images shown in Fig. 14(a).
In the figure we show the refocused irradiance distribution of the image at three differ-
ent distances. In the movie (Visualization 3), we show the refocusing along the entire
3D scene.

Figure 14

(a) Subset of 7 × 7 EIs (300 × 300 pixels each) of the 3D scenes. A movie obtained
after composing the EIs of the central row of the integral image is shown in
Visualization 1; (b) central EI; and (c) grid of 300 × 300 microimages (11 × 11 pixels
each) of the 3D scene. The zoomed area is scaled by a factor of 5.
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The refocusing procedure can be understood more easily if we visualize it as the result
of shifting and summing the pixels of the elemental images [70]. This process is illus-
trated in Fig. 17. When all the elemental images are stacked with no relative shifting
between them, the irradiance distribution at the infinity is rendered. In the general
case, there is a nonlinear relation between the number of pixels of the relative shifting,
nS, and the depth position, zR, of the rendered plane [71]. The relation is

zR � g
N

nS
, (26)

where g is the gap distance in Fig. 15(a), N is the number of pixels per elemental image,
and 0 ≤ nS ≤ N . Note that zR is measured from the refocused plane to the array.

Figure 15

(a) Illustration of the backpropagation algorithm. Any pixel produces a backpropagated
ray passing through the center of the corresponding lens. Clearly, backpropagated rays
change their spatial coordinates but keep constant their angular coordinates. (b) Sketch
of plenoptic map captured by the lens array. (c) Backpropagated (zR > 0) plenoptic map
obtained by shearing the original plenoptic map. The shearing preserves the angular
coordinate. (d) Illustration of the Abel transform necessary for the calculation of the
irradiance distribution of the image at the backpropagated distance.

Figure 16

Three images obtained after applying the refocusing algorithm for three different val-
ues of zR.
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For the implementation of the algorithm we define first the function I i,j�p, q�, which
stands for the value of the �p, q� pixel within the �i, j� elemental image. We assume that
both the number of elemental images, NH (or Nv), and the number of pixels per
elemental image, N , are odd numbers. Then the refocused image corresponding to
a given value of nS is calculated as

OnS�p, q� �
X��NH−1�∕2

i, j�−�NH−1�∕2
I i,j�p − inS, q − jnS�: (27)

Characteristic of this method is that the number of refocused planes is limited by N.
This can be a strong problem, since it is usual that the number of refocused planes in
the region of interest is low. An easy solution to this problem is to resize the elemental
images by an integer factor,m. The problem is that in such a case the computation time
is increased by a factor of m2 and therefore, overflow errors can occur. A minor prob-
lem is that the number of pixels in the refocused image depends on the depth of the
plane. Proper cropping of the images solves this problem.

To allow a good density of refocused planes but avoiding overflow problems, a back-
projection algorithm was reported, in which the number of pixels and depth position
of refocused images can be selected at will [72]. As shown in Fig. 18, in this algorithm
the lens array is substituted by an array of pinholes. As a first step, the depth position,
the refocused image size, and the number of pixels are fixed. Then, the irradiance
value at any pixel of the refocused image is obtained by summing up the values

Figure 17

On the left we show a collection of, for example, 3 × 3 elemental images. Any
elemental image is designed by its index �i, j�. On the right of this figure, we show
the scheme of functioning of the refocusing algorithm for nS � 0, 1, 2, 3.

Figure 18

Scheme of the back-projection algorithm. The number of calculated pixels in the
refocused images is selected at will.
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of the real pixels from the elemental images that are impacted by the straight lines
traced from the calculated pixel and passing through the pinholes. The main drawback
of this algorithm is the lower efficiency in terms of computation time.

Another way of implementing the algorithm shown in Fig. 15, but with higher com-
putational efficiency, is by taking advantage of the Fourier slice theorem [73,74]. This
algorithm works as follows (see the illustration in Fig. 19). First, we obtain the 2D
Fourier transform of the captured plenoptic function:

L̃�ux, uθ� �
ZZ

R2

L�x, θ� expf−i2π�xux � θuθ�gdxdθ: (28)

Note that in this Fourier transformation we are treating θ as a Cartesian coordinate.
In the second step, we rotate the Fourier axes by an angle α, as defined in Fig. 19,�

u0θ
u0x

�
�
�

1 − tan α
tan α 1

��
uθ
ux

�
, (29)

and particularize the spectrum for u0θ � 0. Then we obtain

L̃�u0x, 0� �
ZZ

R2

L�x, θ� expf−i2π�xu0x � θ tan αu0x�gdxdθ: (30)

As the last step, we calculate the inverse 1D Fourier transform of L̃�u0x, 0�:

I�xα� �
Z
R
L̃�u0x, 0� expfi2π�xαu0x�gdu0x

�
Z
R

�ZZ
R2

L�x, θ� expf−i2π�xu0x � θ tan αu0x�gdxdθ
�
expfi2π�xαu0x�gdu0x

�
ZZ

R2

L�x, θ�dxdθ
Z
R

expf−i2πu0x�x� θ tan α − xα�gdu0x: (31)

Now we take into account the following two properties of the Dirac delta function:Z
expf−i2πu�x − x0�gdu � δ�x − x0�, (32)

and

Figure 19

Sketch of the Fourier slice algorithm.
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Z
f �x�δ�x − x0�dx � f �x − x0�: (33)

Then we obtain

I�xα� �
ZZ

R2

L�x, θ�δ�x� θ tan α − xα�dxdθ �
Z
R
L�xα � θ tan α, θ�dθ, (34)

which is similar to Eq. (25), provided that zR � tan α.

The main advantage of the Fourier slice algorithm comes from its computational ef-
ficiency [75]. This efficiency occurs due to that fact that the operation that more com-
putation time consumes, the 2D Fourier transform, is performed only one time for any
given plenoptic image.

4.3. Resolution and Depth of Field in Captured Views
As explained above, in the capture stage of an InIm system, a collection of images of a
3D scene is captured with an array of lenses that are set in front of a single image
sensor array (CCD or CMOS), or by an array of digital cameras, each with its own
sensor. Whatever the capture modality is, the resolution and the DoF of the captured
elemental images are determined by the classical equations of 2D imaging systems.

Recalling the optical imaging fundamentals discussed in Sections 2 and 3, the DoF
and the spatial resolution limits of directly captured EIs are given by the competition
between geometric and diffractive factor; that is,

DoFEI � DoFgeo � DoFdif � 2
f 0#
M2

�Δp � 2λ0f
0
#�, (35)

and

ρEI � maxfρgeo, ρdifg � max

�
2
Δp

jM j , 1.22λ0
f 0#
jM j

�
: (36)

In the experiment shown in Fig. 14 the images were captured with the following
experimental parameters: Δp � 46.8 μm, f 0# � 22, and jM j � 0.033. Assuming λ0 �
0.55 μm we find that DoFgeo � 1.89 m and DoFdif � 0.98 m are comparable, ensur-
ing that the entire scene was captured sharply. The values for the lateral resolution are
ρgeo � 2.8 mm and ρdif � 0.45 mm.

4.4. Resolution and Depth of Field in Refocused Images
The algorithms used for the calculation of refocused images are mainly based on the
sum of multiple, shifted images of the perspectives of a single 3D scene. Thus, the
resolution of refocused images is determined by the resolution of directly captured
EIs. Specifically, in the planes corresponding to an integer value of nS, the resolution
of refocused images is the same as the resolution of captured EIs. In planes corre-
sponding to fractional values of nS there is some gain in resolution due to the entan-
glement between elemental images. However, as demonstrated in [76], where a study
in terms of Monte Carlo statistics is performed, this gain is never larger than a factor of
2. In conclusion, the spatial lateral resolution of refocused images is in the range
defined in the interval:

ρRefoc ∈
�
Δp

jM j , 2
Δp

jM j

�
: (37)

Tutorial Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics 533



In the evaluation of the depth of field of refocused images, one needs to take account
two different concepts, that is, the DoF of the refocusing process (DoFRProc) and the
DoF of refocused images (DoFRefoc). The DoFRProc is defined as the length of the axial
interval in which it is possible to calculate refocused images that are sharp. By sharp,
we mean reconstructed images having a spatial resolution similar to that of EIs at the
ROP. It is important to point out here that the refocusing algorithm does not have the
ability of sharpening images where the captured elemental images are blurry. Thus,
sharp images can be refocused only at depths where the captured EIs are already
sharp. In other words, DoFRProc � DoFEI.

To quantify the second concept, that is, the DoFRefoc, we must take into account that in
imaging systems the DoF is defined as the axial interval in which the irradiance of the
refocused image of a single point source falls less than a factor of 1/2. We can quantify
the DoFRefoc as the length of axial interval corresponding to ΔnS � 2∕�NH � 1�,
where NH is the number of elemental images along the horizontal direction. In
Fig. 20, we show a graphical example to illustrate this property. Note, however, that
if we take into account the 2D structure of real EIs this relation changes
to ΔnS � 2∕�NH � 1�2.
Applying this concept to Eq. (26), we obtain

ΔnS � gN
ΔzR
z2R

: (38)

Therefore,

DoFRefoc � ΔzR � 2
z2R

NN 2
Hg

, (39)

where DoFRefoc � ΔzR, and we have approximated the product �NH � 1�2 to N 2
H.

As an example, we can apply these equations to the rendering process shown in
Fig. 18, and obtain

ρRefoc ∈ �1.4 mm, 2.8 mm� (40)

and

Figure 20

Illustration of the DoF of refocusing process (DoFRefoc). We are considering in this
example the refocusing of a single point source when NH � 7. In this case only one
pixel per EI is impressed. When the refocused image is calculated at the object plane,
all the EIs match and the image is a rectangle with width Δp and height NH. On the
right side, we show the refocused image corresponding toΔnS � 2∕�NH � 1� � 1∕4.
In this case, the refocused image has a pyramid structure with height �NH � 1�∕2.
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DoFRProc � DoFEI � 2.9 m; and DoFRefoc � 2.2 mm: (41)

Summarizing, in the refocusing process, what is blurry in the elemental images cannot be
sharpened in the refocused images. Instead, the refocusing algorithm adds increasing blur-
ring to parts of the 3D scene that are far from the refocused plane. This effect, also known
as bokeh effect, is similar to the one obtained in conventional photography when one
decreases the f -number (or increases the aperture diameter), but keeps in focus the same
object plane.

4.5. Plenoptic Camera
As explained previously, there are basically two ways of capturing the plenoptic field
based on the Lippmann photography architecture. One is by inserting a lens array in
front of a single image sensor (camera). The other is with an array of synchronized
digital cameras. The first method has the advantage that it works with a single image
sensor and therefore does not need any synchronization. The main drawbacks of this
method are that the elemental images are captured with small parallax and that the
lateral magnification is too small. The second method has the advantage of allowing
the capture with high parallax. The drawbacks are that the system may become bulky
with large information bandwidth, and it requires synchronizing the huge amount of
data provided by many digital cameras [77].

An alternative method, which is very useful when small parallax is acceptable, is the
plenoptic camera. This new instrument is obtained by performing simple modifica-
tions of a conventional photographic camera [23]. Specifically, the plenoptic camera is
the result of inserting an array of microlenses just in the image plane, and then shifting
the sensor axially. In Fig. 21 we present a scheme, in which we have drawn the photo-
graphic objective by means of a single thin lens. This is far from the real case, in which
objectives may be composed by the coupling of a number of converging and diverging
lenses, built with different glasses, and a hard aperture stop. However, all these optical
elements can be substituted in the analysis (at least in the paraxial case) by the cardinal
elements, that is, principal planes and focal points, and by the entrance and the exit
pupils. In our illustration, we go further and use a thin lens in which the principal
planes and the aperture stop are at the plane of the lens. This approximation can appear
as very radical, but it helps to simplify the schemes and does not limit the generality to
the conclusions that we will present.

In the plenoptic camera setup, the conjugation relations are of great importance. First,
one must select a ROP within the 3D scene. Then, we define the image plane as the

Figure 21

Single scheme of a plenoptic camera.
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plane that is conjugated with the ROP through the objective lens. Second, the pixelated
sensor must be shifted axially up to the plane that is conjugated with the aperture stop
through the microlenses. This second constraint is very important because it ensures that
a circular microimage is formed behind every microlens. The array of microimages
captured with the sensor after a single shot will be named hereafter as the plenoptic
frame (in the case of a video camera) or the plenoptic picture for a single capture.

There are some features that distinguish the plenoptic picture captured with the ple-
noptic camera and the integral image captured with the InIm setup. The first difference
is that an integral imaging system does not capture the plenoptic field as emitted by the
object, but a propagated one. In contrast the plenoptic camera captures the plenoptic
field as emitted by the ROP, but scaled and sheared. Making use again of ABCD
algebra we can find that the relation between the field emitted by the ROP and
the captured one is

�
x0

θ0

�
�
 − z0

f 0
1
f − f

z0

!�
x
θ

�
, (42)

where z and z0 are measured from the focal points, and z0 � −f 2∕z.
The second difference between the plenoptic captured picture and the integral image is
that while the EIs in InIm are sharp perspectives of the 3D scene (assuming a suffi-
ciently long DoFEI), the microimages are the sampled sections of the plenoptic map.
There exists the common error of trying to find within the microimages sharp images
of regions of the scene. But this is not possible because the microimages are conju-
gated with the aperture stop, which optically is far from the 3D scene. Another differ-
ence is that typically the integral image may be composed of fewer EIs with many
pixels each, while the plenoptic picture is composed of many microimages with few
pixels each.

However, and in spite of these differences, there are major similarities between
the spatial-angular information captured with an InIm system and with a plenoptic
camera. To understand the similarities, it is convenient to start by representing the
plenoptic map captured with a plenoptic camera, as shown in Fig. 22(a). In this
map, a column represents any microimage. The central microimage is just behind
the central microlens. However, the other microimages are displaced outwards.
This explains the vertical sheared structure of the captured radiance map.

If we apply the ABCD algebra, we can calculate the plenoptic map in the plane of the
objective lens, but just before refraction takes effect on the field:

Figure 22

(a) Sampled plenoptic map captured with the plenoptic camera of the previous figure
and (b) the plenoptic map at the lens plane. The two maps are related through a
rotation by π∕2 and a horizontal shearing.
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�
xL
θL

�
�
�

1 f � z0

− 1
f − z0

f

��
x0

θ0

�
: (43)

For a simple understanding of this transformation it is better to consider the case
z0 � 0, in which the MLA is placed just at the BFP of the objective lens. Now
the transformation corresponds to a rotation by π∕2 and a horizontal shearing.
The transformed plenoptic map is shown in Fig. 22(b). We appreciate the similitude
between this plenoptic map, and the one shown in Fig. 13(b), corresponding to in-
tegral photography. Then we can state that the map captured with the plenoptic camera
is equivalent to the map that could be captured with an array of lenses (or digital
cameras) placed at the plane of the photographic objective. Consequently, by applying
a simple pixel mapping, from the plenoptic picture captured with a plenoptic camera
we can extract a collection of subimages that are similar to the EIs captured with an
integral photography system placed at the objective plane. Conversely, from the EIs
captured with InIm, it is possible to extract a collection of subimages that are similar to
the collection of microimages captured with a plenoptic camera. In other words, the
microimages are the subimages of the EIs, and vice versa.

To illustrate these concepts, next we show the plenoptic picture captured with a proto-
type of a plenoptic camera composed of an objective of focal length f � 100 mm and
diameter ϕ � 24 mm. The MLA was composed of lenslets of focal length f L �
0.930 mm and pitch p � 0.222 mm (APO-Q-P222-F0.93 from AMUS). Note that
the f -number matching requirement is fulfilled, since in both cases f 0# � 4.2. As
an image sensor we used a CMOS (EO-5012c 1/2”) with 2560 × 1920 pixels size
Δp � 20 μm. The plenoptic picture is shown in Fig. 23(a). From the microimages,

Figure 23

(a) Plenoptic picture capture with the plenoptic camera prototype (zoomed area is
scaled by a factor of 4), (b) calculated EIs, (c) central EI, and (d) refocused image
at the second jug.
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and by a simple pixel mapping procedure we calculated the associated integral image,
which is composed of 11 × 11 EIs, and shown in Fig. 23(b).

As in the previous section, once we have the collection of EIs we can compose a multi-
perspective movie with the EIs as the frames (see Visualization 4), or calculate the
refocused images of the 3D scene (see Visualization 5). Note, however, that now the
parallax, which is determined by the diameter of the aperture stop, is much smaller
than in the case in which the capture is made with an array of digital cameras. The
quality of the refocused images is worse as well due to two reasons. One is the smaller
parallax and the other is the lower number of pixels available when using a single
image sensor.

4.6. Resolution and Depth of Field in Calculated EIs
To understand the concepts of resolution and DoF in any calculated EI, we particu-
larize our analysis to the central EI. Naturally, the equations that we will deduce are
applicable to the other EIs. As explained above, extracting the central pixel of each
microimage, and composing them following the same order, provides the central cal-
culated EI. Then, according to the Nyquist concept, two points in the object are
resolved in the calculated EI provided that their images fall in different microlenses,
but leaving at least one microlens separation in between. In mathematical terms, this
geometric resolution limit can be expressed as

ρgeo � 2
p

jM j : (44)

The diffraction resolution limit is given, as in previous cases, by

ρdif � 1.22 · λ0 ·
f 0#
jM j : (45)

It is apparent that the value of the pitch is much higher than the product λ0f 0# because
of the small wavelength of light. Therefore, the geometric factor is strongly dominant
over the diffractive one. Thus, we can conclude here that ρcEI � ρgeo, where cEI stands
for the computed EI. This result confirms the strong loss in resolution inherent
to plenoptic cameras, which is, however, caused by the capture of dense angular
information.

To calculate the DoFcEI, we simply need to adapt Eq. (22), taking into account that the
lenslet array pitch has the same effect as the pixel size, that is,

DoFcEI � DoFgeo � DoFdif � 4λ0
f 02#
M 2

�
μ2

2
� 1

�
, (46)

where

μ � p

ρ0dif
. (47)

Again, the geometrical term is much larger than the diffractive one, which is negligible.
As an example, we calculate the resolution and DoF corresponding to the experiment
shown in Fig. 23. In this case, p � 222 μm, jM j � 0.18 (for the central jug),
λ0 � 0.55 μm (mid-spectrum wavelength), and f 0# � 4.2. Then we obtain, ρgeo �
2.22 mm, ρdif � 0.014 mm, μ � 11, DoFgeo � 60 mm, and DoFdif � 0.5 mm.
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In general, there are trade-offs between spatial resolution, field of view, and depth of
field, which are challenges facing 3D integral imaging and light-field systems. Some
approaches to remedy these issues include resolution-priority and depth-priority in-
tegral imaging systems [78], and dynamic integral imaging systems [79–84]. Some
other approaches have proposed increased ray sampling or post-processing [85,86].

Generally speaking, InIm displays should have less problems with eye fatigue as the
3D object is reconstructed optically as opposed to stereoscopic display systems where
there is convergence-accommodation conflict. However, poor angular resolution may
affect the accommodation response [87]:

5. DISPLAY OF PLENOPTIC IMAGES: THE INTEGRAL MONITOR

The original idea of Lippmann was to use the elemental images for the display of 3D
scenes. Specifically, he proposed inserting the elemental images in front of a MLA
similar to the one used in the image capture stage. The light emitted by any point
source generates a light cone after passing through the corresponding microlens.
The real intersection of the light cones in front of the MLA (or the virtual one behind
the MLA) produces a local concentration of light that reproduces the irradiance dis-
tribution of the original 3D scene. The observer perceives as 3D the irradiance
reconstruction. In Fig. 24, we show a scheme for illustrating the integral photography
process.

It is important to point out that there is an essential difference between the integral
photography concept and stereoscopic (or auto-stereoscopic) systems. Stereoscopy is
based on the production of two images from two different perspectives: the left and the
right perspective images. These images are projected, by different means, to the left
and the right retinas of the viewer. The two retinal images have a distance-dependent
disparity, which stimulates a change of the convergence of the binocular visual axes to
allow the fusion between the right and left images. As a result, the scene is perceived
as 3D by the human visual system. The main issue here is that stereo systems are not
producing real 3D scenes, but stereo pairs that are fused by the brain to generate

Figure 24

Scheme of integral photography (IP) concept. (a) Image capture stage and (b) 3D
display stage, which produces floating 3D images in front of the 2D monitor.
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a perception of depth. Such fusion is obtained at the cost of decoupling the physio-
logical processes of binocular convergence and eye accommodation. This decoupling
is a non-natural process, which when maintained for some time, may produce visual
discomfort and adverse effects, such as headache, dizziness, and nausea. However, an
integral monitor does not produce stereo images. Instead it produces real concentra-
tions of light to optically produce 3D images that are observed without decoupling
the convergence and the accommodation. Thus, the detrimental effects of the
convergence-accommodation conflict are avoided.

In order to implement Lippmann ideas with modern opto-electronic devices, one
should take into account first that the function of the microlenses here is not to pro-
duce individually images of the microimages, but to produce light-swords that inter-
sect to create the expected local concentrations of light. Thus, in order to allow the
light-swords to be as narrow as possible, and also to avoid the facet-braiding effect
[72], the MLA should be set such that its focal plane coincides with the position of the
panel’s pixels.

The second and important issue is the resolution. As explained above, one of major
limitations of plenoptic technology comes from the trade-off between the angular and
the spatial resolution. In the case of integral displays, the observer can see only a
single pixel through any microlens. Thus, the display resolution unit is just the pitch
of the MLA. Taking into account that the angular resolution limit of the human eye is
about 0.3 mrad, one can calculate the optimum pitch depending on the observation
distance. For example, in the case of a tablet device that is observed from about 0.4 m,
the optimum value for the pitch would be about 0.12 mm. In the case of a TV that is
observed from about 3.0 m, the optimum pitch would be about 0.9 mm.

If we refer now to the angular resolution, it is remarkable that there are not significant
studies about optimum values in integral display. However, in auto-stereoscopic dis-
play systems that are based on the stereovision there is a more extended experience,
and there are even commercial auto-stereoscopic monitors [88]. In this case it is
widely accepted that 8–12 pixels per microlens can provide a continuously smooth
angular experience. This conclusion can be extrapolated to the case of integral dis-
plays. Thus, the required pixel size would be of about 0.015 mm (1700 dpi) in tablet
devices and of 0.12 mm (225 dpi) in TVs. Note that currently there are commercial
tablets with 359 ppi and commercial TVs with 102 ppi.

Another issue of interest is that the quality of the reconstructed images gets worse as the
reconstruction plane moves away from the plane of the screen. To minimize this prob-
lem, and also to have a good 3D experience, the integral monitor should be designed in
such a way that it displays the 3D image in the neighborhood of the MLA, with some
parts floating behind the panel and some others floating in front of the panel.

As an example of implementation of integral display, we used the microimages re-
corded with a plenoptic camera. Note, however, that to avoid a pseudoscopic effect, it
is necessary to rotate by an angle π any microimage. As for the integral monitor, we
used Samsung tablet SM-T700 (359 ppi), and a MLA consisting of 113 × 113 lenslets
of focal length f L � 3.3 mm and pitch p � 1.0 mm (Model 630 from Fresnel
Technology). In our experiment, we displayed on the tablet the microimages shown
in Fig. 23(a), but rotated by angle π and upsized to each have 15 × 15 pixels. After
fixing and aligning the MLAwith the tablet, we implemented the integral monitor that
is shown in Fig. 25.

To demonstrate full parallax of the displayed images, we recorded pictures of the
monitor from many vertical and horizontal perspectives. From the pictures, we com-
posed Visualization 6. Note from the video that although plenoptic frames are very
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well adapted for the display aim, they produce 3D images with poor parallax. This is
due to the small size of the entrance pupil, inherently associated with photographic
objectives.

The poor parallax associated with the use of the microimages captured with plenoptic
cameras can be overcome if one uses the elemental images captured with an array of
digital cameras. In this case, the parallax is determined by the angle subtended by the
outer cameras as seen from the center of the ROP. The only constraint is that the region
of interest must be within the field of view of all the cameras of the array. From the
captured EIs, and by application of the pixel mapping algorithm, that is, the plenoptic-
map transposition, the microimages are computed. Before applying the algorithm, the
EIs must be resized so that their number of pixels equals the number of lenses of the
MLA in the integral monitor. After applying the algorithm, the microimages should be
resized so that their number of pixels equals the number of pixels behind each micro-
lens in the integral monitor. As an example, in Fig. 26 we show the same EIs and

Figure 25

Overview of our experimental integral-imaging 3D display system. We moved the
recording device vertically and horizontally to record different perspectives provided
by the integral monitor.

Figure 26

(a) 7 × 7 central EIs already shown in Fig. 16 but resized to 113 × 113 pixels; (b) the
corresponding 113 × 113 microimages but resized to 15 × 15 pixels each.
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microimages shown in Fig. 14, but resized accordingly. The result of the display, as
seen from an observer placed in front of the monitor, is shown in Visualization 7.

An interesting point here is that some easy manipulations over the captured elemental
images are possible. For example, by cropping all the elemental images one can nar-
row their field of view [89], and therefore simulate an approximation to the scene (see
Visualization 8).

6. INTEGRAL MICROSCOPY

Three-dimensional live microscopy is important for the comprehension of some bio-
medical processes. The ability of obtaining fast stacks of depth images is important for
the study high-speed dynamics of biological functions, or the response of biological
systems and tissues to rapid external perturbations.

In current 3D techniques, such as confocal microscopy [90–94], structured illumina-
tion microscopy [95–97], or light-sheet microscopy [98,99], the 3D image is not re-
corded in a single shot, but is obtained computationally after recording a stack of 2D
images of different sections within the sample. The stack is captured by a mechanical
axial scanning of the specimen, which could slow down the acquisition or introduce
distortions due to vibrations. A solution to avoid the mechanical scanning is the use of
digital holographic microscopy [100–102], which allows the digital reconstruction of
the wave field in the neighborhood of the sample. The main drawback of this tech-
nique is that it operates coherently and makes impossible fluorescence imaging. More
recent is the proposal of using an electrically tunable lens for obtaining stacks of 2D
images of 3D specimens but avoiding the mechanical vibrations [58,103–105]. In this
case, the challenge is to reduce the aberrations introduced by the liquid lens.

An interesting alternative for capturing 3D microscopic images in a single shot is
based in the plenoptic technology. Plenoptic cameras have the drawback of capturing
views with very poor parallax when imaging far scenes. However, this problem is
overcome when plenoptic cameras and/or an integral imaging system with a single
camera are used for the case of small scenes that are very close to the objective. These
are the conditions that inherently occur in the case of optical microscopy. In Fig. 27(a),
we show a schematic layout of an optical microscope, which is arranged by coupling
in a telecentric manner a MO and a converging tube lens. In the scheme, we have tried

Figure 27

(a) Scheme of a telecentric optical microscope and (b) the integral microscope is ob-
tained by inserting a MLA at the image plane.
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to make visible the optical-design complexity of the MO, which intends to produce
aberration-free images within a large field of view. The microscope is designed to
provide the sensor with highly magnified images of the focal plane. The magnification
of the microscope is determined by the specifications of the MO, so that

Mhst �
f TL
f ob

, (48)

where f TL and f ob are the focal length of the tube lens and the MO, respectively. Note
that we have omitted a minus sign in Eq. (48). Such a sign is irrelevant here but would
account for the inversion suffered by the image obtained at the image sensor. It is
interesting, as well, that we have used the subscript “hst” because we are naming
as the “host microscope” the optical microscope in which the MLA is inserted to
obtain, as explained later, an integral microscope.

Now we can particularize Eqs. (21) and (22) to the case of the optical microscope
and state

ρhst � max

�
2
Δp

Mhst

,
0.61 · λ0
NA

�
, (49)

and

DoFhst �
1

NA

�
Δp

M hst

� λ0
NA

�
: (50)

The implementation of an IMic is illustrated in Fig. 27(b). The key point is to insert an
adequate MLA at the image plane of the host microscope. The sensor is then axially
displaced toward the microlenses BFP. The MLA consists of only two surfaces, one
plane and the other molded with an array of spherical diopters. As shown in the figure,
the focal plane is imaged on the curved surface. Then, at the sensor a collection of
microimages is obtained. In order to avoid the overlapping between the microimages,
and also to make effective use of the image sensor pixels, the numerical aperture of the
microlenses (NAL � p∕2f L) and that of the MO in its image space (NA0 � NA∕Mhst),
should be equal.

From the captured microimages, and after applying simple ABCD algebra, it easy to
calculate the plenoptic map at the aperture-stop plane:�

xF
θF

�
�
�

0 f TL− 1
f TL

0

��
x0

θ0

�
: (51)

This transformation is similar to the one shown in Fig. 22, but simpler since there is no
shearing in this case. Thus, by plenoptic-map transposition (or pixel-mapping pro-
cedure) it is possible to calculate the orthographic views of the 3D sample. In the
views, the number of pixels is equal to the number of lenslets of the MLA. For
the evaluation of the resolution limit and the DoF provided by the IMic, we must
adapt Eqs. (44) and (45) to the microscopy regime, and therefore we obtain

ρView � max

�
2

p

Mhst

, ρhst

�
: (52)

If we use again the coefficient μ, defined in Subsection 4.6, which was defined as the
quotient between the MLA pitch and the Airy disk radius, and assume that such a
quotient is always higher than one, we obtain
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ρView � 2μρhst: (53)

Similarly, the DoF of the views is given by

DoFView � p

MNA
� λ0

NA2
� λ0

NA2

�
μ2

2
� 1

�
: (54)

It is also straightforward to find the DoF of the refocused images is

DoFRefoc �
λ0
NA2

�
μ

2
� 1

�
: (55)

It is important to remind here that the IMic is a hybrid technique in which the capture
is a purely optics process. In this process the setting of the optical elements, the optical
aberrations, and the diffraction effects have great influence in the quality of the cap-
tured microimages. However, the calculation of the orthographic views and the cor-
responding computation of the refocused images are para-geometrical computational
procedures in which it is assumed that ray optics is valid. Thus, potentially a conflict
between the diffractive nature of the capture and the para-geometrical nature of the
computation can appear, especially in the microscopy regime. To the best of our
knowledge, no study has been published exploring the limits of IMic; however,
we have found from our own experiments that for values of μ > 5 the technique
is providing acceptable results and the measured resolution limit and the DoF are
similar to the ones predicted by Eqs. (53)–(55).

To illustrate the utility of IMic, we built in our laboratory a pre-prototype composed of
a 20 × ∕0.40MO and a tube lens of f TL � 200 mm. Since the MO was designed to be
coupled with a tube lens of 180 mm, the effective magnification was M nat � 22.22.
The MLAwas composed of 120 × 120 lenslets with pitch p � 80 μm and numerical
aperture NAL � 0.023 (APO-Q-P80-R0.79 manufactured by AMUS). The coupling
between NAs is reasonably good since NA0 � 0.018. As a sample object, we used
regular cotton, which provides an almost hollow specimen with large depth range
and composed of long fibers with thin structure. The fiber diameter varies from
11 to 22 μm. The sample was stained with fluorescent ink using a marking pen,
and illuminated with light from a laser of wavelength λ0 � 532 nm. A chromatic filter
(λc � 550 nm) was used to reject the non-fluorescent light. The microimages captured
are shown in Fig. 28(a). From these microimages it is possible to calculate the cor-
responding orthographic views, and from them the refocused images. The experimen-
tal results are shown in Fig. 28 with associated Visualizations.

These results illustrate the potential possibilities of IMic, which from a single capture
can provide multiple perspectives of microscopic samples.

Naturally, this is an incipient technology and there is still much work to do for pro-
viding IMic with competitive resolution and DoF, and also for implementing the real-
time display of microscopic views. In this sense it is of great interest the recent pro-
posal of capturing the light-field emitted by a microscopic sample but placing the
MLA not at the image plane, but at the Fourier plane of the microscope. This system
has been named the Fourier integral microscope (FIMic) [50,106], and a scheme of it
is shown in Fig. 29.

An advantage of the FIMic is that the orthographic views (named here as elemental
images) are recorded directly. Since in commercial MOs the AS may not be acces-
sible, a telecentric relay system can be necessary. The CCD is set at the BFP of the
MLA. The FS is chosen such that the EIs are tangent at the CCD; in other words,

544 Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics Tutorial



ϕFS � p
f 2
f L

: (56)

The efficiency of the FIMic is determined, mainly, by the dimensionless parameter

N � f 2
f 1

ϕAS

p
, (57)

which accounts for the number of microlenses that are fitted within the aperture stop,
and represents also the number of EIs provided by the FIMic. This shrinkage gives rise
to a reduction of the effective numerical aperture up to

NAEI �
NA

N
, (58)

which implies a reduction of the spatial resolution and an increase of the DoF.

Figure 29

Schematic layout of Fourier integral microscopy (FIMic). A collection of EIs is ob-
tained directly. The telecentric relay system is composed of two converging lenses
(RL1 and RL2) coupled in an afocal manner.

Figure 28

(a) Microimages captured directly with the IMic (zoomed area is magnified by a factor
of 3), (b) calculated views, (c) the central view (full movie is shown in Visualization 9),
and (d) refocused image (full movie is shown in Visualization 10).
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The spatial resolution of EIs produced by the FIMic is determined by the competition
between wave optics and sensor pixelation. According to wave optics, two points are
distinguished in the EIs provided that the distance between them fulfills the condition

ρWEI �
0.61λ0
NAEI

: (59)

On the other hand, and according to Nyquist, the distance between the two points
should be large enough to be recorded by different pixels leaving at least an empty
pixel in between. Therefore,

ρNyqEI � 2Δp

f MO

f 1

f 2
f L

: (60)

The combination of these two factors leads to

ρEI � max

�
N
0.61λ0
NA

, 2Δp

f 2 f MO

f L f 1

�
: (61)

If the pixel size is selected in such a way that the two terms have the same value,
we obtain

ρEI �
0.61λ0
NA

N : (62)

Concerning the DoF, we adapt the classical formula to the effective NAEI [60], that is,

DOFEI � λ0
N2

NA2
� Δp

N

NA

f 2 f MO

f L f 1
: (63)

Assuming again the same pixel size as above, we find

DOFEI �
5

4

λ0
NA2

N 2: (64)

If we compare these formulae with the ones obtained in the case of the IMic [Eqs. (52)
and (53)], we obtain

ρEI �
N

2μ
ρView and DOFEI �

5N2

4� 2μ2
DOFView: (65)

From Eq. (65) it comes out that given an IMic, it is possible to design a FIMic with the
same resolution but much better DOF, or with the same DOF but much better reso-
lution. This advantage of the FIMic is achieved, however, at the cost of producing a
smaller number of views.

To illustrate the utility of the Fourier concept we have implemented a FIMic composed
of the following elements: a 20× MO of focal length f MO � 9.0 mm and NA � 0.4.
The relay system is composed of two achromatic doublets of focal length f 1 � 50 mm

and f 2 � 40 mm. The lens array was composed of microlenses of focal length
f L � 6.5 mm and pitch p � 1.0 mm (NAL � 0.077), arranged in a hexagonal way
(APH-Q-P1000-R2.95 from AMUS). The diameter of the field stop was set to
ϕFS � 6.2 mm. The sensor was a CMOS (EO-5012c ½”) with 2560 × 1920 pixels
(5.6 × 4.2 mm) of size Δp � 2.2 μm. This sensor allows the capture of up to five
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EIs in the horizontal direction and up to four in the vertical one. Each EI is circular and
with a diameter of 454 pixels.

Assuming a standard value of λ0 � 0.55 μm this optical setup is able to produce EIs
with optical resolution of ρWEI � 4.0 μm. According to Nyquist, this value provides a
good matching between the optical and the pixel resolution. Taking into account all
these experimental parameters, the value of N � 5.68. This implies an expected res-
olution of ρEI � 4.3 μm and an expected DOFEI ≈ 150 μm. As a sample we used
again regular cotton.

We implemented a setup able to function in two different modes: bright-field and
fluorescence. In the bright-field experiment the sample was illuminated with the white
light proceeding from a fiber bundle. In the fluorescence case, the sample was stained
with fluorescent ink, and illuminated with the light proceeding from a laser of wave-
length λ0 � 532 μm. A chromatic filter (λc � 550 nm) was used to reject the
laser light. In Fig. 30, we show the central elemental images obtained in the two
experiments.

Any EI provided by the FIMic is directly an orthographic view of the 3D sample, and
therefore a composition of them provides a multi-perspective movie. The movies are
shown in Visualization 11 (bright-field) and Visualization 12 (fluorescence).

Figure 30

Seven central elemental images obtained with the bright-field (left) and with the
fluorescence (right) setup.

Figure 31

Examples of refocused irradiance distribution. In Visualization 13 and Visualization 14,
we show movies corresponding to refocusing tracks ranging up to 0.4 mm.
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In order to illustrate the capacity of the FIMic for providing refocused images with
good and homogeneous resolution along a large depth range, we calculated the
refocused images from the EIs by direct application of shifting and sum algorithm.
Here the relation between the refocusing depth and the number of pixels, nS, that the
EIs are shifted is

zR � nS
Δp f

2
2 f

2
ob

pf 21 f L
: (66)

Naturally, the precision of the depth calculation is ΔzR � Δp f
2
ob f

2
2∕pf 21 f L. In Fig. 31

we show the refocused irradiances.

It is remarkable that in the past some interesting research was addressed to design new
digital processing algorithms (see, for example, [107]) for the improving the resolu-
tion of refocused images calculated from low-resolution view images. Naturally this
kind of computational tool could be applied as well to the high-resolution EIs obtained
with the FIMic.

7. CONCLUSIONS

In the past decade, there has been a substantially increasing interest and R&D activities
in researching and implementing efficient technologies for the capture, processing, and
display of 3D images. This interest is evident by the broad research and development
efforts in government, industry, and academia in this topic. Among the 3D technologies,
integral imaging is a promising approach for its ability to work without laser sources, and
under incoherent or ambient light. The image capture stage is well suited for outdoor
scenes and for short- or long-range objects. Integral imaging systems have been applied
in many fields, such as entertainment, industrial inspection, security and defense, and
biomedical imaging and display, among others. This tutorial is intended for engineers,
scientists, and researchers who are interested to learn about this 3D imaging technique by
presenting the fundamental principles to understand, analyze, and experimentally imple-
ment plenoptic, light-field, and integral-imaging-type capture and display systems.

The tutorial is prepared for readers who are familiar with the fundamentals of optics as
well as those readers who may not have a strong optics background. We have reviewed
the fundamentals of optical imaging, such as the geometrical optics and the wave
optics tools for analysis of optical imaging systems. In addition, we have presented
more advanced topics in 3D imaging and displays, such as image capture stage,
manipulation of captured elemental images, the methods for implementing 3D integral
imaging monitors, 3D reconstruction algorithms, performance metrics, such as lateral
and longitudinal magnifications, and field of view, integral imaging applied in micros-
copy, etc. We have presented and discussed simple laboratory setups and optical ex-
periments to illustrate 3D integral imaging, light-field, and plenoptics principles.

While we have done our best to provide a tutorial on the fundamentals of the integral
imaging, light-field, and plenoptic systems, it is not possible to present an exhaustive
coverage of the field in a single paper. Therefore, we apologize in advance if we have
inadvertently overlooked some relevant work by other authors. A number of referen-
ces [1–121], including overview papers, are provided to aid the reader with additional
resources and better understanding of this technology.

APPENDIX A: FUNDAMENTAL EQUATIONS OF GEOMETRICAL OPTICS
AND ABCD FORMALISM

This appendix presents a brief summary of the fundamentals of geometrical optics and
ABCD formulism to describe the spatial-angular state of optical rays. An alternative

548 Vol. 10, No. 3 / September 2018 / Advances in Optics and Photonics Tutorial



way of expressing the state of a ray in a given moment of its trajectory is by means of a
2D vector, whose components are the spatial and the angular coordinates of the ray.
The matrices that express the different spatial-angular states have 2 × 2 dimensions
and are called ABCDmatrices. In what follows, we show the advantages of the ABCD
formalism, and deduce the fundamental equations of geometrical optics [57].

A.1. ABCD Matrices for Ray Propagation and Refraction
We start by considering a ray of light that propagates in free space. Although no axis
of symmetry is defined in this case, we can use a Cartesian reference system in which
we define the optical axis in the z direction. The optical axis and the ray define a plane,
named here as the meridian plane, on which the trajectory of the ray is confined. This
confinement happens in the case of free-space propagation and also in the case of
refraction. Then, the state of a ray at a given plane perpendicular to the optical axis
can be described with only two, spatial and angular, coordinates. In Fig. 32, we show
the trajectory of a single ray in free space and define the spatial-angular coordinates at
two different planes separated by distance t.

From Fig. 32, it is apparent that using small angle approximation,

σ2 � σ1 and y2 � y1 − tσ1: (A1)

These relations can be grouped in a single matrix equation,�
y2
σ2

�
�
�
1 −t
0 1

��
y1
σ1

�
, (A2)

where we have made an implicit definition of the ABCD matrix, T, corresponding to
free-space propagation through distance t:

T �
�
A B
C D

�
�
�
1 −t
0 1

�
: (A3)

In what follows, we will call the two planes connected by an ABCD matrix the input
plane and the output plane. It is also remarkable that in the above calculation, and also
in all the forthcoming ABCD formalism, we assume the small angle (or paraxial)
approximation, so that tan σ ≈ σ.

The next step is to calculate the ABCD matrix corresponding to the refraction at a
diopter. Note that we name as diopter the surface that separates two media with differ-
ent refractive indices, ni. In paraxial optics, diopters are typically plane or spherical.

Figure 32

Scheme for illustration of the spatial-angular coordinates of a ray. For the distances we
consider positive the directions that are from left to right and from bottom to top. The
angles are measured from the ray to the optical axis and are positive if they follow the
counterclockwise direction. Following such criteria, the angles σ1 and σ2 shown in this
figure are negative.
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To calculate the ABCDmatrix of a spherical diopter, we need to follow the trajectory of
two rays. Our deduction makes use of the Snell’s law for refraction at a diopter; that is,
n1 sin σ1 � n2 sin σ2, which in the paraxial approximation is n1σ1 ≈ n2σ2. Then we
follow first the ray that refracts at the vertex of the diopter [see ray (1) in Fig. 33(b)] and
find that for any value of σ1, y2 � y1 � 0 and σ2 � n1σ1∕n2. In other words, we find
the value of three elements of the matrix: A � 1, B � 0, andD � n1∕n2. Following ray
(2), which corresponds to a ray parallel to the optical axis (σ1 � 0), and taking into
account the refraction at the diopter, σ0 � n1σ∕n2, and that σ2 � σ0 − σ, we find

C � n2 − n1
n2r

� 1

f D
: (A4)

In this equation, we recognize the fact that all the rays that impinge the diopter parallel
to the optical axis, focus at the same point, called the focal point, or simply the focus, F 0.
We define also the focal length of the diopter, f D, as the distance from the vertex to the
focus. Thanks to the sign criterion, the definition of f D covers all the possible cases. One
example is the case shown in Fig. 33(b); that is the convex or converging, diopter for
which n2 > n1 and r > 0, and therefore f D > 0. Another example is the concave diop-
ter (n2 > n1 and r ≈ 0), which produces diverging rays with f D < 0.

We can write the ABCD matrix corresponding to a spherical diopter as

S �
0
@ 1 0

n2 − n1
n2r

n1
n2

1
A �

0
@ 1 0

1

f D

n1
n2

1
A: (A5)

Naturally, this matrix can be written for the particular case of the plane diopter
(r � ∞) [see Fig. 33(a)]:

P �
0
@ 1 0

0
n1
n2

1
A: (A6)

A.2. ABCD Matrices Thick and Thin Lenses
Making use of the two canonic matrices, T and S, discussed before, we can tackle the
study of any paraxial optical system. First, we start by calculating the matrix corre-
sponding to a lens made with a glass of refractive index n, and with thickness e
(see Fig. 34).

Figure 33

Scheme for deduction of the ABCD matrices that describe refraction in (a) the plane
diopter and (b) the spherical diopter.
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In this case, any ray that impinges on the lens suffers three transformations in cascade.
First is refraction in S1, then propagation by distance e, and finally refraction in S2.
In the ABCD formulism, the matrix of the lens is the result of the product:

L � S2 · T · S1�
�

1 − e
f D1

− e
n

n
f D1

� 1
f D2

− e
f D1f D2

1 − e
nf D2

�
: (A7)

From this matrix one can define the focal length, f , of the thick lens as

1

f
� n

f D1
� 1

f D2
− e

f D1f D2
� �n − 1�

�
1

r1
− 1

r2
� e

n − 1

nr1r2

�
: (A8)

Also in this case, and depending on its geometry, a lens can be convergent (f > 0) or
divergent (f < 0). An equivalent way of describing the capacity of lenses for focusing
the light beams is through their optical power, defined as P � 1∕f , which is measured
in diopters, D � m−1. In what follows, we can use, at convenience, P or f for describ-
ing the focusing capacity of a lens.

It is beneficial to list some general properties of ABCD matrices:

(a) The determinant of any ABCD matrix, M, is jMj � n1∕n2. Naturally, in the case
of operating between planes with the same refractive indices, jMj � 1.

(b) In the case of B � 0, y2 � Ay1 independently of the value of σ1. Consequently, all
the rays emitted by a point on the input plane cross at a single point on the output
plane. This means that the output point is the image of the input one; in other
words, the two planes are conjugate through the optical system. Thus, we can
state as general property that if an ABCD matrix is operating between two con-
jugate planes, then B � 0. In any other case B ≠ 0. In addition, the following
conclusions can be made:

(b1) If B � 0, the element A � y2∕y1 represents the lateral magnification be-
tween the conjugate planes. From now, we will denote the lateral mag-
nification of any imaging system with the letter M.

(b2) If B � 0, and considering only rays proceeding from the axial point of
the object plane, y1 � 0, the element D � σ2∕σ1 represents the angular
magnification, to which we assign the letter γ.

(c) For all the planes connected with an ABCD matrix, the element C � 1∕f is
always the inverse of the focal length of the system.

Coming back to the particular case of the lens, it is remarkable that in many optical
systems it is acceptable to consider that the quotient e∕n is vanishingly small and can
be omitted in the ABCD matrix. In this case, known as the thin-lens approximation,
we can write

Figure 34

Scheme of refraction through a thick lens.
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Lthin �
0
@ 1 0

1

f
1

1
A, (A9)

where

1

f
� 1

f D1
� 1

f D2
: (A10)

This approximation allows us to derive very easily some of the classical equations of
the geometrical optics. This is the case of the Gaussian conjugation equations, which
are obtained as result of calculating the matrix that operates between two planes that
are conjugate through a thin lens (see Fig. 35). The matrix that connects the plane O
with the plane O0 is

MOO0 � TLO0 · Lthin · TOL �

0
BB@

1 − a0

f
a − a0

�
1� a

f

�
1

f
1� a

f

1
CCA: (A11)

In the case that O and O0 are conjugate points, element B � 0, and therefore

− 1

a
� 1

a0
� 1

f
, (A12)

which is the well-known Gaussian lens equation. Substituting this result into elements
A and D of Eq. (A12) we obtain the lateral and the angular magnification:

MOO0 �

0
B@M � a0

a
0

1

f
γ � a

a0

1
CA: (A13)

Also of great interest is the calculation of the ABCD matrix between the FFP and the
BFP of a thin lens (see Fig. 36). In this case,

MFF0 � TLF0 · Lthin · TFL �
�
1 −f
0 1

��
1 0

P 1

��
1 −f
0 1

�
�
�
0 −f
P 0

�
: (A14)

This matrix yields a rotation by π∕2 (plus an anamorphic scaling) of spatial-angular
information. Explicitly,

y2 � −f σ1 and σ2 � Py1: (A15)

It is noticeable that apart from their well-known capacity for forming images, the
optical lenses have the capacity of transposing the spatial-angular information of

Figure 35

Image formation through a thin lens.
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incident rays after propagating from the FFP and the BFP. In short, light beams with
the same spatial content in the FFP have the same angular content in the BFP, and vice
versa. In fact, this is the property that explains the well-known fact that if one places a
point source at the FFP of a lens, a bundle of parallel rays is obtained at the BFP.

A.3. Principal Planes and the Nodal Points
We revisit the study of the thick lens and search for a special pair of conjugate planes,
which in case they exist, have the property of having the lateral and the angular mag-
nifications equal to one. A scheme for this situation is shown in Fig. 37.

Such planes are denoted as the principal planes, named asH and H 0, and their position
can be easily calculated from the ABCD matrix:

MHH0 � TS2H
0 · L · THS1

�

0
BBB@

1 − e

f D1
− x0H

f
xH

�
1 − e

f D1

�
− e

n
− x0H

�
1� xH

f
− e

nf D2

�
1

f
1� xH

f
− e

nf D2

1
CCCA: (A16)

From the above matrix it is straightforward to find that for

x0H � −e f

f D1
and xH � e

n

f

f D2
, (A17)

the ABCD matrix is reduced to

MHH0 �
0
@ 1 0

1

f
1

1
A: (A18)

Figure 37

ABCD matrix between the principal planes of a thick lens. Points N and N 0 are known
as the nodal points.

Figure 36

ABCD matrix between the focal planes.
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In other words, any thick lens shows a behavior similar to the one shown by a thin
lens, provided that the origin for the axial distances is set at the principal planes, whose
positions are given by Eq. (A17). The important outcome is that the conjugation equa-
tions deduced above, for the case of thin lenses, are also valid in the case of thick
lenses. The axial points of the principal planes are named as the nodal points (N
and N 0) of the thick lens, and are related for having angular magnification equal
to one. Another important issue is that in thick lenses the focal length f , also named
elsewhere as the effective focal length, is measured from the principal plane. The dis-
tance between the rear diopter and the focus is known as the back focal length.

As an example, next we calculate the position of the principal planes of the two con-
verging lenses, as shown in Fig. 38. In the case of the biconvex lens, we obtain that the
EFL is f � 12.8 mm, the positions of the principal planes are xH � 4.4 mm,
x0H � −5.1 mm, and the back focal length is BFL � x0H � f � 7.7 mm. In the case
of the plano–convex lens, f � 25.0 mm, xH � 0.0 mm, x0H � −10.0 mm, and
BFL � 15.0 mm.

Although we have not demonstrated explicitly in this appendix, the concept of prin-
cipal planes and nodal points can be extended to any focal system [110]. Then, we can
state that for any given complexity, a focal system can be described by its focal length
and the principal planes. Once those parameters are known, the matrix shown
in Eq. (A18) can be used to calculate the position and size of an image or, in more
general terms, the spatial-angular properties at any propagated distance.

One example of this capacity is the case in which we have a focal system from which
we know only the position of the focal planes, and the EFL. Suppose that we want to
know the position and size of the image of an object that is placed at a distance z from
F (see Fig. 39). To solve this problem, we only need to calculate the matrix:

MOO0 � MF0O0 ·MFF0 ·MOF �
0
@−z0∕f −f − zz0∕f

1

f
z∕f

1
A: (A19)

From this matrix we infer that conjugated planes, B � 0, are related by the equation

zz0 � −f 2: (A20)

The lateral magnification between the image and the object plane is

M � − z0

f
� f

z
: (A21)

These two equations are known as Newtonian conjugation equations.

Figure 38

Two examples for the calculation of cardinal parameters of a thick lens. (a) Biconvex
lens with r1 � 13 mm, r2 � −10 mm, e � 10 mm, and n � 1.52; (b) plano–convex
lens with r1 � 13 mm, r2 � ∞, e � 10 mm, and n � 1.52.
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APPENDIX B: FUNDAMENTAL EQUATIONS OF WAVE OPTICS THEORY
OF IMAGE FORMATION

This appendix presents a brief summary of the fundamentals of wave-optics free-pace
propagation and lenses interaction. The main outcome from this appendix is that a
converging lens has the ability of transposing the spatial-frequency information car-
ried a by a light beam. In the main text of this paper we show that this essential char-
acteristic helps to explain the image-formation capacity of optical systems.

B.1. Interferences between Waves
We start by considering a monochromatic plane light wave that propagates in the vac-
uum along the z direction with speed c. Its amplitude, f �z, t�, is given by [59]

f �z, t� � A · cos

�
2π

�
z

λ0
− t

T

��
� A · cos�k0z − ωt� � A

2
�ei�k0z−ωt� � cc�, (B1)

where λ0 is the spatial period (or wavelength in vacuum), and T is the temporal period,
which are related through c � λ0T

−1, where c is the speed of the light in vacuum. In
addition, k0 � 2π∕λ0 is the wavenumber, and ω � 2πν is the angular frequency, with
ν � T−1 the temporal frequency of the wave. In Eq. (B1) the acronym cc refers to the
complex-conjugate term e−i�k0z−ωt�. As an example, we consider the monochromatic
wave emitted by a He–Ne laser, λ0 � 0.633 μm. Taking into account that
c � 3 · 108 ms−1, the temporal frequency of this wave is 4.8 · 1014 s−1. Let us remark
that currently there is no instrument capable of detecting such a fast waveform and
therefore, the wave nature of a light beam is undetectable directly. However, as shown
below, the interference phenomenon will allow us to perceive and measure the wave
parameters.

It is common in wave optics to use complex representation of the monochromatic
waves, and omit the complex-conjugate term. When the spatial information is the
main interest, it is also usual to omit the temporal term and concentrate on the spatial
variations. Thus, the amplitude of a monochromatic plane wave is usually written as

f �z� � Aeik0z: (B2)

If the plane wave propagates along a direction that forms angles α, β, and γ with the
axes x, y, and z, respectively, the amplitude is given by

f �x, y, z� � Aeik0�x cos α�y cos β�z cos γ�, (B3)

where cos2 α� cos2 β� cos2 γ � 1.

Figure 39

Scheme for the calculation of the correspondence equations when the axial distances
are measured from the focal planes.
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The complex representation of the amplitude of a spherical wave (produced by a
monochromatic point source) evaluated at a point placed at a distance r from the point
source is

f �r� � A
eik0r

r
� A

eik0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2�z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p : (B4)

To avoid dealing with the functional square root and simplify the analysis, it is usual to
perform the paraxial (or small angle, or parabolic) approximation that assumes that the
field is evaluated only in regions in which z2 ≫ x2 � y2. In this case, Eq. (15) can be
written as

f �x, y, z� � A
eik0z

z
· ei

k0
2z�x2�y2�: (B5)

The paraxial approximation simplifies the analysis. For example, consider the
classical Young experiment in which the interference of two monochromatic spherical
waves is obtained (see Fig. 40). If the pinholes are sufficiently small, we can consider
that each one is producing a monochromatic spherical wave. On the screen, we can
observe the interference between the two spherical wavefronts. The amplitude distri-
bution on the screen, u�x, y, z�, is given by the sum of the amplitudes of two mutually
shifted spherical waves:

u�x, y, z� � A

�
eik0z

z
ei

k0
2z ��x−a�2�y2� � eik0z

z
ei

k0
2z��x�a�2�y2�

�
: (B6)

What is captured by any light detector, such as the human retina or a CCD camera, is
not the amplitude distribution of the light but the irradiance distribution, which is
proportional to the intensity (or squared modulus of the amplitude) distribution, IT:

IT�x, y, z� � ju�x, y, z�j2 � A2

z2
cos2

�
π

x

λ0z∕2a

�
, (B7)

where we have omitted a constant proportionality factor. We find that as result of the
Young experiment, a set of cosine interference fringes is obtained. The period of
fringes is pλ � λ0z∕2a. As an example, we consider the light emitted by a He–Ne

Figure 40

Illustration of the wave nature of the light scheme of the experimental setup for the
implementation of the Young experiment. The monochromatic wave emitted by
a laser is expanded and impinges a diffracting screen composed of two pinholes.
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laser (λ0 � 0.633 μm), two pinholes separated by distance 2a � 1.0 mm, and the
screen placed at z � 1000 mm away from the pinholes. In this experiment, the period
of the fringes is pλ � 0.63 mm. We infer from this experiment that (1) the interference
makes perceptible the wave nature of light, and (2) the wave nature of light appears
when the light passes through small obstacles.

B.2. Interferences between Multiple Waves: the Concept of Field Propagation
Next, we shall study a much more general case in which we substitute the two pin-
holes by a diffracting screen, which can be considered as being composed of a con-
tinuous distribution of pinholes each having a different transmittance. In this case, to
obtain the amplitude distribution at a distance z, we must consider multiple interfer-
ences, which are described by the superposition of a continuous distribution of spheri-
cal waves with different amplitudes and phases. This superposition can be described
by using the following 2D integral:

u�x, y, z� �
ZZ �∞

−∞
t�x0, y0�

eikz

z
ei

k
2z��x−x0�2��y−y0�2�dx0dy0 � t�x, y� ⊗ h�x, y; z�: (B8)

Equation (B8) can be considered as a convolution between two functions t�·� and h�·�.
In this equation, t�x0, y0� is the continuous magnitude counterpart of A in Eq. (B6), and
represents the transmittance in amplitude of the screen; h�·� is a quadratic phase
function; and the symbol ⊗ represents the convolution operator, defined as

g�x, y� � f �x, y� ⊗ h�x, y� �
ZZ

R2

f �x0, y0�h�x − x0, y − y0�dx0dy0: (B9)

From Eq. (B8) we find that the amplitude distribution at a distance z from the dif-
fracting screen is given by the 2D convolution between the amplitude transmittance
of the screen and the function

h�x, y; z� � eik0z

λ0z

�
i
k

2z
�x2 � y2�

�
: (B10)

This function represents the PSF associated with the free-space propagation of light
waves. Note that a more rigorous, and tedious, deduction of this formula would yield
to the presence of factor λ0 in the denominator of Eq. (B10). This factor does not
appear from our deduction, but we have included it for the sake of rigorousness.

B.3. Propagation of Light Waves through Converging Lenses
The next step toward our aim of analyzing the image formation in terms of wave optics
is to define the amplitude transmittance of a thin lens. To this end we use a heuristic
reasoning that is based on the well-known capacity of lenses for focusing plane
waves [see Fig. 41(a)]. Specifically, a thin lens can transform an incident plane
wave, u−L �x, y� � exp�ik0z�, into a converging spherical wave, u�L �x, y� �
exp�ik0z� expf−ik0�x2 � y2�∕2f g. Then we can define the transmittance of a lens as

tL�x, y� �
u��x, y�
u−�x, y� � exp

�
−i k0

2f
�x2 � y2�

�
: (B11)

With these analytical tools we can calculate how the wave field propagates from the
FFP to the BFP of a lens [see Fig. 41(b)]. Proceeding in a way similar to the one used
in the ABCD formalism, we simply have to apply in cascade a propagation by distance
f , the action of the lens, and again a propagation by distance f .
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As the first step, we calculate

u−L �x,y�� t�x,y�⊗ eik0 f

λ0 f
exp

�
i
k0
2f

�x2� y2�
�
� eik0 f

λ0 f
exp

�
i
k0
2f

�x2�y2�
�

×
ZZ

R2

t�x0,y0� exp
�
i
k0
2f

�x20�y20�
�
exp

�
−i2π

�
x

λ0 f
x0�

y

λ0 f
y0

��
dx0dy0:

(B12)

The integral in Eq. (B12) is easily recognized as the Fourier transform of the product
of two functions, and therefore, it can be rewritten as

u−L �x, y� �
eik0 f

iλ20 f
2
exp

�
i
k0
2f

�x2 � y2�
��

t̃

�
x

λ0 f
,

y

λ0 f

�
⊗ exp

�
−i k0

2f
�x2 � y2�

��
,

(B13)

where t̃�·� denotes the Fourier transform of function t�·�. To obtain the above equation,
we have made use of three well-known properties. First, the Fourier transform of a
product of two functions is equal to the convolution between their Fourier transforms
(and vice versa):

ZZ
R2

m�x, y�n�x, y� expf−i2π�xu� yv�gdxdy � m̃�u, v� ⊗ ñ�u, v�: (B14)

The second is the scaling property of the convolution operation, which states that if
f �x, y� ⊗ h�x, y� � g�x, y�, then

f

�
x

a
,
y

a

�
⊗ h

�
x

a
,
y

a

�
� a2g

�
x

a
,
y

a

�
: (B15)

And the third is the well-known Fourier transform of a quadratic phase function:

F

�
exp

�
i
k0
2f

�x2 � y2�
��

� −iλ0f exp�−iπλ0f �u2 � v2��, (B16)

with u � x∕λ0 f and v � y∕λ0 f .

As the second step toward calculating the amplitude distribution at the BFP of a lens,
we calculate the effect of the lens on the impinging light wave, that is,

Figure 41

(a) Scheme for the definition of the amplitude transmittance of a thin lens and
(b) scheme for the propagation of light waves from the FFP to the BFP of a lens.
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u�L �x, y� � u−L �x, y�tL�x, y� �
eik0 f

iλ20 f
2

�
t̃

�
x

λ0 f
,

y

λ0 f

�
⊗ exp

�
−i k0

2f
�x2 � y2�

��
:

(B17)

Finally, we obtain the amplitude at the BFP of the lens after calculating the propa-
gation by distance f :

u1�x, y� � u�L �x, y� ⊗
eik0 f

λ0 f
exp

�
i
k0
2f

�x2 � y2�
�

� ei2k0 f

iλ30 f
3
t̃

�
x

λ0 f
,

y

λ0 f

�
⊗ exp

�
−i k0

2f
�x2 � y2�

�
⊗ exp

�
i
k0
2f

�x2 � y2�
�

� ei2k0 f

iλ0 f
t̃

�
x

λ0 f
,

y

λ0 f

�
: (B18)

To obtain this result, we have taken into account the following convolution:

exp

�
−i k0

2f
�x2 � y2�

�
⊗ exp

�
i
k0
2f

�x2 � y2�
�

� λ20 f
2δ�x, y�, (B19)

where δ�x, y� is the 2D Dirac delta function. We have taken into account the following
well-known delta function property for any function f �x, y�:

f �x, y� ⊗ δ�x − x0, y − y0� � f �x − x0, y − y0�: (B20)

If we omit the irrelevant amplitude and phase constant factors in Eq. (B18), we find
that converging lenses have the ability to perform in real time the 2D Fourier transform
of the amplitude distribution at the lens FFP. Although this property has been deduced
here for the case of a thin lens, it is valid for a thick lens and in general for any focusing
system. In other words, and similar to what was obtained in the geometrical optics
with the ABCD formalism, a lens has the capacity of transposing, from the BFP to the
FFP, the spatial-frequency information of the light beam. An example of this is that a
point source, represented by a delta function and placed in the FFP of a lens, is trans-
formed into a plane wave and vice versa, as shown in Eq. (B21):

δ�x − x0, y − y0�⟶
F

exp

�
−i2π

�
x

λ0 f
x0 �

y

λ0 f
y0

��
: (B21)
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